424,375 research outputs found

    Quasi-local energy for cosmological models

    Full text link
    First we briefly review our covariant Hamiltonian approach to quasi-local energy, noting that the Hamiltonian-boundary-term quasi-local energy expressions depend on the chosen boundary conditions and reference configuration. Then we present the quasi-local energy values resulting from the formalism applied to homogeneous Bianchi cosmologies. Finally we consider the quasi-local energies of the FRW cosmologies. Our results do not agree with certain widely accepted quasi-local criteria.Comment: Contributed to International Symposium on Cosmology and Particle Astrophysics (CosPA 2006), Taipei, Taiwan, 15-17 Nov 200

    Nonlinear analysis of phased-locked loops with rapidly varying phase

    Get PDF
    The performance of command and telemetry systems, useful in deep-space communications, is frequently affected by the radio-frequency phase error which is introduced at the point of reception by means of the carrier tracking loop. In low data rate communications, this phase error may vary rapidly over the duration of the signaling interval. In this paper such phase variation is characterized by a sinusoidal input phase, K sin (omega sub o t+, pi/6), which models a typical phase variation in communication over turbulent media. Conditions for synchronization stability and the acquisition behavior are examined by detailed computer study of the phase-plane trajectories for the second and third-order loops with perfect integrator. It is demonstrated that for the phase variation considered the third-order loop has no real advantage over the second-order loop. Finally, it is shown that nonzero initial conditions may result in large steady-state phase error

    Improved reference models for middle atmosphere ozone

    Get PDF
    Improvements are provided for the ozone reference model which is to be incorporated in the COSPAR International Reference Atmosphere (CIRA). The ozone reference model will provide considerable information on the global ozone distribution, including ozone vertical structure as a function of month and latitude from approximately 25 to 90 km, combining data from five recent satellite experiments (Nimbus 7 LIMS, Nimbus 7 SBUV, AE-2 SAGE, Solar Mesosphere Explorer (SME) UVS, and SME IR). The improved models are described and use reprocessed AE-2 SAGE data (sunset) and extend the use of SAGE data from 1981 to the period 1981-1983. Comparisons are shown between the ozone reference model and various nonsatellite measurements at different levels in the middle atmosphere

    Allowable silicon wafer thickness versus diameter for ingot rotation ID wafering

    Get PDF
    Inner diameter (ID) wafering of ingot rotation reduce the ID saw blade diameter was investigated. The blade thickness can be reduced, resulting in minimal kerf loss. However, significant breakage of wafers occurs during the rotation wafering as the wafer thickness decreases. Fracture mechanics was used to develop an equation relating wafer thickness, diameter and fracture behavior at the point of fracture by using a model of a wafer, supported by a center column and subjected to a cantilever force. It is indicated that the minimum allowable wafer thickness does not increase appreciably with increasing wafer diameter and that fracture through the thickness rather than through the center supporting column limits the minimum allowable wafer thickness. It is suggested that the minimum allowable wafer thickness can be reduced by using a vacuum chuck on the wafer surface to enhance cleavage fracture of the center core and by using 111 ingots

    Charm elliptic flow at RHIC

    Full text link
    Charm elliptic flow in heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) is studied in a multiphase transport model. Assuming that the cross section for charm quark scattering with other light quarks is the same as that between light quarks, we find that both charm and light quark elliptic flows are sensitive to the value of the cross section. Compared to that of light quarks, the elliptic flow of charm quarks is smaller at low transverse momentum but approaches comparable values at high transverse momentum. Similar features are seen in the elliptic flow of charmed mesons as well as that of the electrons from their semileptonic decays when the charmed mesons are produced from quark coalescence during hadronization of the partonic matter. To describe the large electron elliptic flow observed in available experimental data requires a charm quark scattering cross section that is much larger than that given by the perturbative QCD

    Dirac Leptogenesis with a Non-anomalous U(1)U(1)^{\prime} Family Symmetry

    Full text link
    We propose a model for Dirac leptogenesis based on a non-anomalous U(1)U(1)^{\prime} gauged family symmetry. The anomaly cancellation conditions are satisfied with no new chiral fermions other than the three right-handed neutrinos, giving rise to stringent constraints among the charges. Realistic masses and mixing angles are obtained for all fermions. The model predicts neutrinos of the Dirac type with naturally suppressed masses. Dirac leptogenesis is achieved through the decay of the flavon fields. The cascade decays of the vector-like heavy fermions in the Froggatt-Nielsen mechanism play a crucial role in the separation of the primodial lepton numbers. We find that a large region of parameter space of the model gives rise to a sufficient cosmological baryon number asymmetry through Dirac leptogenesis.Comment: 8 pages, 8 figures, version to appear in JHE

    A STIS Survey for OVI Absorption Systems at 0.12 < z < 0.5 I.: The Statistical Properties of Ionized Gas

    Full text link
    We have conducted a systematic survey for intervening OVI absorbers in available echelle spectra of 16 QSOs at z_QSO = 0.17-0.57. These spectra were obtained using HST/STIS with the E140M grating. Our search uncovered a total of 27 foreground OVI absorbers with rest-frame absorption equivalent width W_r(1031) > 25mA. Ten of these QSOs exhibit strong OVI absorbers in their vicinity. Our OVI survey does not require the known presence of Lya, and the echelle resolution allows us to identify the OVI absorption doublet based on their common line centroid and known flux ratio. We estimate the total redshift survey path, \Delta z, using a series of Monte-Carlo simulations, and find that \Delta z=1.66, 2.18, and 2.42 for absorbers of strength W_r = 30, 50 and 80mA, respectively, leading to a number density of dN(W > 50mA)/dz = 6.7 +/- 1.7 and dN(W > 30mA)/dz = 10.4 +/- 2.2. In contrast, we also measure dN/dz = 27 +/- 9 for OVI absorbers of W_r > 50mA at |\Delta v|< 5000 kms from the background QSOs. Using the random sample of OVI absorbers with well characterized survey completeness, we estimate a mean cosmological mass density of the OVI gas \Omega(OVI)h = 1.7 +/- 0.3 x 10^-7. In addition, we show that <5% of OVI absorbers originate in underdense regions that do not show a significant trace of HI. Furthermore, we show that the neutral gas column N(HI) associated with these OVI absorbers spans nearly five orders of magnitude, and show moderate correlation with N(OVI). Finally, while the number density of OVI absorbers varies substantially from one sightline to another, it also appears to be inversely correlated with the number density of HI absorbers along individual lines of sight.Comment: 12 pages. ApJ accepte
    corecore