188 research outputs found

    Virtual Water Flows Embodied in International and Interprovincial Trade of Yellow River Basin: A Multiregional Input-Output Analysis

    Get PDF
    With the imminent need of regional environmental protection and sustainable economic development, the concept of virtual water is widely used to solve the problem of regional water shortage. In this paper, nine provinces, namely Qinghai, Sichuan, Gansu, Ningxia, Inner Mongolia, Shaanxi, Shanxi, Henan, and Shandong in the Yellow River Basin (YRB), are taken as the research objects. Through the analysis of input-output tables of 30 provinces in China in 2012, the characteristics of virtual water trade in this region are estimated by using a multi-regional input-output (MRIO) model. The results show that: (1) The YRB had a net inflow of 17.387 billion m³ of virtual water in 2012. In interprovincial trade, other provinces outside the basin export 21.721 billion m³ of virtual water into the basin. In international trade, the basin exports 4334 million m³ of virtual water to the international market. (2) There are different virtual flow paths in the basin. Shanxi net inputs virtual water by interprovincial trade and international trade, while Gansu and Ningxia net output virtual water by interprovincial trade and international trade. The other six provinces all net output virtual water through international trade, and obtain the net input of virtual water from other provinces outside the basin. (3) From the industrial structure of the provinces in the basin, the provinces with a relatively developed economy, such as Shandong and Shanxi, mostly import virtual water in the agricultural sector, while relatively developing provinces, such as Gansu and Ningxia, mostly import virtual water in the industrial sector. In order to sustain the overall high-quality development of the YRB, we propose the virtual water trade method to quantify the net flow of virtual water in each province and suggest the compensation responsibility of the virtual water net inflow area, and the compensation need of the virtual water net outflow area, in order to achieve efficient water resources utilization

    Fish Waste Based Lipopeptide Production and the Potential Application as a Bio-Dispersant for Oil Spill Control

    Get PDF
    There is a growing acceptance worldwide for the application of dispersants as a marine oil spill response strategy. The development of more effective dispersants with less toxicity and higher biodegradability would be a step forward in improving public acceptance and regulatory approvals for their use. By applying advances in environmental biotechnology, a bio-dispersant agent with a lipopeptide biosurfactant produced by Bacillus subtilis N3-1P as the key component was formulated in this study. The economic feasibility of producing biosurfactant (a high-added-value bioproduct) from fish waste-based peptone as a nutrient substrate was evaluated. Protein hydrolyzate was prepared from cod liver and head wastes obtained from fish processing facilities. Hydrolysis conditions (i.e., time, temperature, pH and enzyme to substrate level) for preparing protein hydrolyzates were optimized by response surface methodology using a factorial design. The critical micelle dilution (CMD) value for biosurfactant produced from the fish liver and head waste generated peptones was 54.72 and 47.59 CMD, respectively. Biosurfactant product generated by fish liver peptone had a low critical micelle concentration of 0.18 g L–1 and could reduce the surface tension of distilled water to 27.9 mN/m. Structure characterization proved that the generated biosurfactant product belongs to the lipopeptide class. An alternative to the key surfactant dioctyl sulfosuccinate sodium (DOSS) used in Corexit 9500 has been proposed based on a binary mixture of lipopeptides and DOSS that exhibited synergistic effects. Using the standard baffled flask test, a high dispersion efficiency of 76.8% for Alaska North Slope oil was achieved at a biodispersant composition of 80/20 (v/v) of lipopeptides/DOSS. The results show that fish waste can be utilized to produce a more effective, environmentally acceptable and cost-efficient biodispersant that can be applied to oil spills in the marine environment

    Molecular Characterization and Antimicrobial Susceptibility of Nasal Staphylococcus aureus Isolates from a Chinese Medical College Campus

    Get PDF
    Staphylococcus aureus colonization and infection occur more commonly among persons living or working in crowded conditions, but characterization of S. aureus colonization within medical communities in China is lacking. A total of 144 (15.4%, 144/935) S. aureus isolates, including 28 (3.0%, 28/935) MRSA isolates, were recovered from the nares of 935 healthy human volunteers residing on a Chinese medical college campus. All S. aureus isolates were susceptible to vancomycin, quinupristin/dalfopristin and linezolid but the majority were resistant to penicillin (96.5%), ampicillin/sulbactam (83.3%) and trimethoprim/sulfamethoxazole (93.1%). 82%, (23/28) of the MRSA isolates and 66% (77/116) of the MSSA isolates were resistant to multiple antibiotics, and 3 MRSA isolates were resistant to mupirocin—an agent commonly used for nasal decolonization. 16 different sequence types (STs), as well as SCCmec genes II, III, IVd, and V, were represented among MRSA isolates. We also identified, for the first time, two novel STs (ST1778 and ST1779) and 5 novel spa types for MRSA. MRSA isolates were distributed in different sporadic clones, and ST59-MRSA-VId- t437 was found within 3 MRSA isolates. Moreover, one isolate with multidrug resistance belonging to ST398-MRSA-V- t571 associated with animal infections was identified, and 3 isolates distributed in three different clones harbored PVL genes. Collectively, these data indicate a high prevalence of nasal MRSA carriage and molecular heterogeneity of S. aureus isolates among persons residing on a Chinese medical college campus. Identification of epidemic MRSA clones associated with community infection supports the need for more effective infection control measures to reduce nasal carriage and prevent dissemination of MRSA to hospitalized patients and health care workers in this community

    UCP2 Mitigates the Loss of Human Spermatozoa Motility by Promoting mROS Elimination

    Get PDF
    Background/Aims: To demonstrate the function of uncoupling protein 2 (UCP2) in the regulation of human spermatozoa motility. Methods: Semen samples were collected from donors with either normal spermatozoa motility (normospermia [NS]) or poor spermatozoa motility (asthenospermia [AS]). UCP2 protein in spermatozoawas quantified by Western blotting. The level of mitochondrial reactive oxygen species (mROS) was evaluated by MitoSOX Red. The activity of mitochondrial membrane potential (MMP) in spermatozoa was evaluated by a JC-1 assay and the ATP level was monitored by a luciferin-luciferase assay. Results: UCP2 was expressed in both NS and AS groups, with the former exhibiting a higher level than the latter. Immunofluorescence analysis shows that UCP2 is mainly located at the mid-region of human spermatozoa. The inhibition of UCP2 by a highly selective inhibitor, Genipin, results in not only impaired spermatozoa mobility (P<.05) but also an elevated level of mROS (P<.05), suggesting that UCP2 is involved in the maintenance of the spermatozoa mobility, which probably is achieved by promoting mROS elimination. Furthermore, H2O2 treatment of spermatozoa increases the mROS level coupled with the loss of spermatozoa mobility. Unexpectedly, this treatment also has a positive impact on the expression of UCP2 within a certain range of supplemental H2O2, indicating the moderate mROS level possibly serves as a feedback signal to stimulate the expression of UCP2. Finally, the treatment of spermatozoa by an ROS scavenger, N-acetyl-l-cysteine (NAC),decreases the level of mROS and increases the curvilinear velocity (VCL) of spermatozoa, but the UCP2 level is not affected. Conclusion: These results suggest an UCP2–mROS–motility regulatory system exists for maintaining spermatozoa mobility in humans. In such a system, UCP2 fulfills its function by promoting mROS elimination, and slightly over-produced mROS in turn serves as a signal to stimulates the expression of UCP2. This regulatory system represents a new potential target for the discovery of novel pharmaceuticals for the treatment of patients with low spermatozoa motility

    Muon Flux Measurement at China Jinping Underground Laboratory

    Full text link
    China Jinping Underground Laboratory (CJPL) is ideal for studying solar-, geo-, and supernova neutrinos. A precise measurement of the cosmic-ray background would play an essential role in proceeding with the R\&D research for these MeV-scale neutrino experiments. Using a 1-ton prototype detector for the Jinping Neutrino Experiment (JNE), we detected 264 high-energy muon events from a 645.2-day dataset at the first phase of CJPL (CJPL-I), reconstructed their directions, and measured the cosmic-ray muon flux to be (3.53±0.22stat.±0.07sys.)×10−10(3.53\pm0.22_{\text{stat.}}\pm0.07_{\text{sys.}})\times10^{-10} cm−2^{-2}s−1^{-1}. The observed angular distributions indicate the leakage of cosmic-ray muon background and agree with the simulation accounting for Jinping mountain's terrain. A survey of muon fluxes at different laboratory locations situated under mountains and below mine shaft indicated that the former is generally a factor of (4±2)(4\pm2) larger than the latter with the same vertical overburden. This study provides a convenient back-of-the-envelope estimation for muon flux of an underground experiment

    Performance of the 1-ton Prototype Neutrino Detector at CJPL-I

    Full text link
    China Jinping Underground Laboratory (CJPL) provides an ideal site for solar, geo-, and supernova neutrino studies. With a prototype neutrino detector running since 2017, containing 1-ton liquid scintillator (LS), we tested its experimental hardware, performed the physics calibration, and measured its radioactive backgrounds, as an early stage of the Jinping Neutrino Experiment (JNE). We investigated the radon background and implemented the nitrogen sealing technology to control it. This paper presents the details of these studies and will serve as a key reference for the construction and optimization of the future large detector at JNE

    Ca 2+-CaM Dependent Inactivation of RyR2 Underlies Ca 2+ Alternans in Intact Heart

    Get PDF
    Rationale: Ca2+ alternans plays an essential role in cardiac alternans that can lead to ventricular fibrillation, but the mechanism underlying Ca2+ alternans remains undefined. Increasing evidence suggests that Ca2+ alternans results from alternations in the inactivation of cardiac RyR2 (ryanodine receptor 2). However, what inactivates RyR2 and how RyR2 inactivation leads to Ca2+ alternans are unknown. Objective: To determine the role of CaM (calmodulin) on Ca2+ alternans in intact working mouse hearts. Methods and results: We used an in vivo local gene delivery approach to alter CaM function by directly injecting adenoviruses expressing CaM-wild type, a loss-of-function CaM mutation, CaM (1-4), and a gain-of-function mutation, CaM-M37Q, into the anterior wall of the left ventricle of RyR2 wild type or mutant mouse hearts. We monitored Ca2+ transients in ventricular myocytes near the adenovirus-injection sites in Langendorff-perfused intact working hearts using confocal Ca2+ imaging. We found that CaM-wild type and CaM-M37Q promoted Ca2+ alternans and prolonged Ca2+ transient recovery in intact RyR2 wild type and mutant hearts, whereas CaM (1-4) exerted opposite effects. Altered CaM function also affected the recovery from inactivation of the L-type Ca2+ current but had no significant impact on sarcoplasmic reticulum Ca2+ content. Furthermore, we developed a novel numerical myocyte model of Ca2+ alternans that incorporates Ca2+-CaM-dependent regulation of RyR2 and the L-type Ca2+ channel. Remarkably, the new model recapitulates the impact on Ca2+ alternans of altered CaM and RyR2 functions under 9 different experimental conditions. Our simulations reveal that diastolic cytosolic Ca2+ elevation as a result of rapid pacing triggers Ca2+-CaM dependent inactivation of RyR2. The resultant RyR2 inactivation diminishes sarcoplasmic reticulum Ca2+ release, which, in turn, reduces diastolic cytosolic Ca2+, leading to alternations in diastolic cytosolic Ca2+, RyR2 inactivation, and sarcoplasmic reticulum Ca2+ release (ie, Ca2+ alternans). Conclusions: Our results demonstrate that inactivation of RyR2 by Ca2+-CaM is a major determinant of Ca2+ alternans, making Ca2+-CaM dependent regulation of RyR2 an important therapeutic target for cardiac alternans.This work was supported by research grants from the Heart and Stroke Foundation of Canada (G-19-0026444), the Heart and Stroke Foundation Chair in Cardiovascular Research (END611955), the Canadian Institutes of Health Research to S.R.W. Chen (PJT-155940), the Spanish Ministry of Science Innovation and Universities SAF2017-88019-C3-1R, 2R, and 3R (to L. Hove-Madsen, R. Benitez, and B. Echebarria), Marato-TV3 20152030 (to L. Hove-Madsen) and 20151110 (to B. Echebarria), and Generalitat de Catalunya SGR2017-1769 (to L. Hove-Madsen).Peer reviewe

    Tumor Endothelium Marker-8 Based Decoys Exhibit Superiority over Capillary Morphogenesis Protein-2 Based Decoys as Anthrax Toxin Inhibitors

    Get PDF
    Anthrax toxin is the major virulence factor produced by Bacillus anthracis. The toxin consists of three protein subunits: protective antigen (PA), lethal factor, and edema factor. Inhibition of PA binding to its receptors, tumor endothelium marker-8 (TEM8) and capillary morphogenesis protein-2 (CMG2) can effectively block anthrax intoxication, which is particularly valuable when the toxin has already been overproduced at the late stage of anthrax infection, thus rendering antibiotics ineffectual. Receptor-like agonists, such as the mammalian cell-expressed von Willebrand factor type A (vWA) domain of CMG2 (sCMG2), have demonstrated potency against the anthrax toxin. However, the soluble vWA domain of TEM8 (sTEM8) was ruled out as an anthrax toxin inhibitor candidate due to its inferior affinity to PA. In the present study, we report that L56A, a PA-binding-affinity-elevated mutant of sTEM8, could inhibit anthrax intoxication as effectively as sCMG2 in Fisher 344 rats. Additionally, pharmacokinetics showed that L56A and sTEM8 exhibit advantages over sCMG2 with better lung-targeting and longer plasma retention time, which may contribute to their enhanced protective ability in vivo. Our results suggest that receptor decoys based on TEM8 are promising anthrax toxin inhibitors and, together with the pharmacokinetic studies in this report, may contribute to the development of novel anthrax drugs
    • …
    corecore