239,020 research outputs found
On fast radial propagation of parametrically excited geodesic acoustic mode
The spatial and temporal evolution of parametrically excited geodesic
acoustic mode (GAM) initial pulse is investigated both analytically and
numerically. Our results show that the nonlinearly excited GAM propagates at a
group velocity which is, typically, much larger than that due to finite ion
Larmor radius as predicted by the linear theory. The nonlinear dispersion
relation of GAM driven by a finite amplitude drift wave pump is also derived,
showing a nonlinear frequency increment of GAM. Further implications of these
findings for interpreting experimental observations are also discussed
Designing dual-plate meteoroid shields: A new analysis
Physics governing ultrahigh velocity impacts onto dual-plate meteor armor is discussed. Meteoroid shield design methodologies are considered: failure mechanisms, qualitative features of effective meteoroid shield designs, evaluating/processing meteoroid threat models, and quantitative techniques for optimizing effective meteoroid shield designs. Related investigations are included: use of Kevlar cloth/epoxy panels in meteoroid shields for the Halley's Comet intercept vehicle, mirror exposure dynamics, and evaluation of ion fields produced around the Halley Intercept Mission vehicle by meteoroid impacts
Pinned Bilayer Wigner Crystals with Pseudospin Magnetism
We study a model of \textit{pinned} bilayer Wigner crystals (WC) and focus on
the effects of interlayer coherence (IC) on pinning. We consider both a
pseudospin ferromagnetic WC (FMWC) with IC and a pseudospin antiferromagnetic
WC (AFMWC) without IC. Our central finding is that a FMWC can be pinned more
strongly due to the presence of IC. One specific mechanism is through the
disorder induced interlayer tunneling, which effectively manifests as an extra
pinning in a FMWC. We also construct a general "effective disorder" model and
effective pinning Hamiltonian for the case of FMWC and AFMWC respectively.
Under this framework, pinning in the presence of IC involves
\textit{interlayer} spatial correlation of disorder in addition to intralayer
correlation, leading to \textit{enhanced} pinning in the FMWC. The pinning mode
frequency (\wpk) of a FMWC is found to decease with the effective layer
separation, whereas for an AFMWC the opposite behavior is expected. An abrupt
drop of \wpk is predicted at a transition from a FMWC to AFMWC. Possible
effects of in-plane magnetic fields and finite temperatures are addressed.
Finally we discuss some other possible ramifications of the FMWC as an
electronic supersolid-like phase.Comment: Slightly revised. The final version is published on PR
Radiatively Induced Lorentz and CPT Violation in Schwinger Constant Field Approximation
The Schwinger proper-time method is an effective calculation method,
explicitly gauge invariant and nonperturbative. We make use of this method to
investigate the radiatively induced Lorentz and CPT-violating effects in
quantum electrodynamics when an axial vector interaction term is introduced in
the fermionic sector. The induced Lorentz and CPT-violating Chern-Simons term
coincides with the one obtained using a covariant derivative expansion but
differs from the result usually obtained in other regularization schemes. A
possible ambiguity in the approach is also discussed.Comment: 11 pages, REVTeX, typos and a few equations corrected, a comment
added to the conclusions, acknowledgments adde
Direction-of-Arrival Estimation Based on Sparse Recovery with Second-Order Statistics
Traditional direction-of-arrival (DOA) estimation techniques perform Nyquist-rate sampling of the received signals and as a result they require high storage. To reduce sampling ratio, we introduce level-crossing (LC) sampling which captures samples whenever the signal crosses predetermined reference levels, and the LC-based analog-to-digital converter (LC ADC) has been shown to efficiently sample certain classes of signals. In this paper, we focus on the DOA estimation problem by using second-order statistics based on the LC samplings recording on one sensor, along with the synchronous samplings of the another sensors, a sparse angle space scenario can be found by solving an minimization problem, giving the number of sources and their DOA's. The experimental results show that our proposed method, when compared with some existing norm-based constrained optimization compressive sensing (CS) algorithms, as well as subspace method, improves the DOA estimation performance, while using less samples when compared with Nyquist-rate sampling and reducing sensor activity especially for long time silence signal
Spontaneous Scale Symmetry Breaking in 2+1-Dimensional QED at Both Zero and Finite Temperature
A complete analysis of dynamical scale symmetry breaking in 2+1-dimensional
QED at both zero and finite temperature is presented by looking at solutions to
the Schwinger-Dyson equation. In different kinetic energy regimes we use
various numerical and analytic techniques (including an expansion in large
flavour number). It is confirmed that, contrary to the case of 3+1 dimensions,
there is no dynamical scale symmetry breaking at zero temperature, despite the
fact that chiral symmetry breaking can occur dynamically. At finite
temperature, such breaking of scale symmetry may take place.Comment: 12 pages, no figures, uses RevTeX4-bet
The preparation, characterization, and pharmacokinetic studies of chitosan nanoparticles loaded with paclitaxel/dimethyl-β-cyclodextrin inclusion complexes.
A novel biocompatible and biodegradable drug-delivery nanoparticle (NP) has been developed to minimize the severe side effects of the poorly water-soluble anticancer drug paclitaxel (PTX) for clinical use. PTX was loaded into the hydrophobic cavity of a hydrophilic cyclodextrin derivative, heptakis (2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD), using an aqueous solution-stirring method followed by lyophilization. The resulting PTX/DM-β-CD inclusion complex dramatically enhanced the solubility of PTX in water and was directly incorporated into chitosan (CS) to form NPs (with a size of 323.9–407.8 nm in diameter) using an ionic gelation method. The formed NPs had a zeta potential of +15.9–23.3 mV and showed high colloidal stability. With the same weight ratio of PTX to CS of 0.7, the loading efficiency of the PTX/DM-β-CD inclusion complex-loaded CS NPs was 30.3-fold higher than that of the PTX-loaded CS NPs. Moreover, it is notable that PTX was released from the DM-β-CD/CS NPs in a sustained-release manner. The pharmacokinetic studies revealed that, compared with reference formulation (Taxol(®)), the PTX/DM-β-CD inclusion complex-loaded CS NPs exhibited a significant increase in AUC(0→24h) (the area under the plasma drug concentration–time curve over the period of 24 hours) and mean residence time by 2.7-fold and 1.4-fold, respectively. Therefore, the novel drug/DM-β-CD inclusion complex-loaded CS NPs have promising applications for the significantly improved delivery and controlled release of the poorly water-soluble drug PTX or its derivatives, thus possibly leading to enhanced therapeutic efficacy and less severe side effects
Gravitational Laser Back-Scattering
A possible way of producing gravitons in the laboratory is investigated. We
evaluate the cross section electron + photon electron + graviton
in the framework of linearized gravitation, and analyse this reaction
considering the photon coming either from a laser beam or from a Compton
back-scattering process.Comment: 11 pages, 2 figures (available upon request), RevTeX, IFT-P.03/9
- …