2,071 research outputs found
Key Factors Influencing Consumer Intent to Recycle Denim Apparel: A Study of U.S. Millennials
Denim, recycle, sustainability, perceived valu
Recommended from our members
Impact of climate variability and change on crime rates in Tangshan, China
Studies examining the relation between climate and human conflict often focus on the role of temperature and have diverging views on the significance of other climatic variables. Using a 6-year (from 2009 to 2014) dataset of crime statistics collected in a medium size city of Tangshan in China, we find strong, positive correlations between temperature and both violent and property crimes. In addition, relative humidity is also positively correlated with Rape and Minimal Violent Robbery (MVR). The seasonal cycle is a significant factor that induces good correlations between crime rates and climatic variables, which can be reasonably explained by the Routine Activity theory. We also show that the combined impacts of temperature and relative humidity on crime rates can be reasonably captured by traditional heat stress indices. Using an ensemble of CMIP5 global climate change simulations, we estimate that at the end of the 21st century the rates of Rape (violent crime) and MVR (property crime) in Tangshan will increase by 9.5 ± 5.3% and 2.6 ± 2.1%, respectively, under the highest emission scenario (Representative Concentration Pathway 8.5). The gross domestic product (GDP) is also shown to be significantly correlated with MVR rates and the regression results are strongly impacted by whether GDP is considered or not
9-{[4-(Dimethylamino)benzyl]amino}-5-(4-hydroxy-3,5-dimethoxyphenyl)-5,5a,8a,9-tetrahydrofuro[3′,4′:6,7]naphtho[2,3-d][1,3]dioxol-6(8H)-one methanol monosolvate
In the title compound, C30H32N2O7·CH4O, the tetrahydrofuran ring and the six-membered ring fused to it both display envelope conformations, with the ring C atom opposite the carbonyl group and the adjacent bridgehead C atom as the flaps, respectively. In the crystal structure, intermolecular O—H⋯O hydrogen bonds link all moieties into ribbons along [010]. Weak intermolecular C—H⋯O interactions consolidate the crystal packing further
Speciation of toxic pollutants in Pb/Zn smelter slags by X-ray Absorption Spectroscopy in the context of the literature
Pb/Zn smelter slag is a hazardous industrial waste from the Imperial Smelting Process (ISP). The speciation of zinc, lead, copper and arsenic in the slag controls their recovery or fate in the environment but has been little investigated. X-ray Absorption Spectroscopy (XAS) was applied to this complex poorly crystalline material for the first time to gain new insights about speciation of elements at low concentration. Zn, Cu, As K-edge and Pb L3-edge XAS was carried out for a Pb/Zn slag from a closed ISP facility in England, supported by Fe, S and P K-edge XAS. Results are presented in the context of a full review of the literature. X-ray fluorescence showed that concentrations of Zn, Pb, Cu and As were 8.4, 1.6, 0.48 and 0.45 wt.%, respectively. Wüstite (FeO) was the only crystalline phase identified by X-ray diffraction, but XAS provided a more complete understanding of the matrix. Zn was found to be mainly present in glass, ZnS, and possibly solid solutions with Fe oxides; Pb was mainly present in glass and apatite minerals (e.g., Pb5(PO4)3OH); Cu was mainly speciated as Cu2S, with some metallic Cu and a weathering product, Cu(OH)2; As speciation was likely dominated by arsenic (III) and (V) oxides and sulfides
The Phosphodiesterase-4 Inhibitor Rolipram Attenuates Heroin-Seeking Behavior Induced By Cues Or Heroin Priming In Rats
Inhibition of phosphodiesterase-4 (PDE4), an enzyme that specifically hydrolyzes cyclic adenosine monophosphate (cAMP) increases intracellular cAMP/cAMP-response element binding protein (CREB) signaling. Activation of this signaling is considered as an important compensatory response that decreases motivational properties of drugs of abuse. However, it is not known whether PDE4 is involved in heroin seeking. Self-administration of heroin (5
Understanding variation in transcription factor binding by modeling transcription factor genome-epigenome interactions
Despite explosive growth in genomic datasets, the methods for studying epigenomic mechanisms of gene regulation remain primitive. Here we present a model-based approach to systematically analyze the epigenomic functions in modulating transcription factor-DNA binding. Based on the first principles of statistical mechanics, this model considers the interactions between epigenomic modifications and a cis-regulatory module, which contains multiple binding sites arranged in any configurations. We compiled a comprehensive epigenomic dataset in mouse embryonic stem (mES) cells, including DNA methylation (MeDIP-seq and MRE-seq), DNA hydroxymethylation (5-hmC-seq), and histone modifications (ChIP-seq). We discovered correlations of transcription factors (TFs) for specific combinations of epigenomic modifications, which we term epigenomic motifs. Epigenomic motifs explained why some TFs appeared to have different DNA binding motifs derived from in vivo (ChIP-seq) and in vitro experiments. Theoretical analyses suggested that the epigenome can modulate transcriptional noise and boost the cooperativity of weak TF binding sites. ChIP-seq data suggested that epigenomic boost of binding affinities in weak TF binding sites can function in mES cells. We showed in theory that the epigenome should suppress the TF binding differences on SNP-containing binding sites in two people. Using personal data, we identified strong associations between H3K4me2/H3K9ac and the degree of personal differences in NFκB binding in SNP-containing binding sites, which may explain why some SNPs introduce much smaller personal variations on TF binding than other SNPs. In summary, this model presents a powerful approach to analyze the functions of epigenomic modifications. This model was implemented into an open source program APEG (Affinity Prediction by Epigenome and Genome, http://systemsbio.ucsd.edu/apeg)
Recommended from our members
Understanding Variation in Transcription Factor Binding by Modeling Transcription Factor Genome-Epigenome Interactions
Despite explosive growth in genomic datasets, the methods for studying epigenomic mechanisms of gene regulation remain primitive. Here we present a model-based approach to systematically analyze the epigenomic functions in modulating transcription factor-DNA binding. Based on the first principles of statistical mechanics, this model considers the interactions between epigenomic modifications and a cis-regulatory module, which contains multiple binding sites arranged in any configurations. We compiled a comprehensive epigenomic dataset in mouse embryonic stem (mES) cells, including DNA methylation (MeDIP-seq and MRE-seq), DNA hydroxymethylation (5-hmC-seq), and histone modifications (ChIP-seq). We discovered correlations of transcription factors (TFs) for specific combinations of epigenomic modifications, which we term epigenomic motifs. Epigenomic motifs explained why some TFs appeared to have different DNA binding motifs derived from in vivo (ChIP-seq) and in vitro experiments. Theoretical analyses suggested that the epigenome can modulate transcriptional noise and boost the cooperativity of weak TF binding sites. ChIP-seq data suggested that epigenomic boost of binding affinities in weak TF binding sites can function in mES cells. We showed in theory that the epigenome should suppress the TF binding differences on SNP-containing binding sites in two people. Using personal data, we identified strong associations between H3K4me2/H3K9ac and the degree of personal differences in NFκB binding in SNP-containing binding sites, which may explain why some SNPs introduce much smaller personal variations on TF binding than other SNPs. In summary, this model presents a powerful approach to analyze the functions of epigenomic modifications. This model was implemented into an open source program APEG (Affinity Prediction by Epigenome and Genome, http://systemsbio.ucsd.edu/apeg).</p
Enhancement of cisplatin sensitivity in lewis lung carcinoma by liposome-mediated delivery of a survivin mutant
<p>Abstract</p> <p>Background</p> <p>A high concentration of cisplatin (CDDP) induces apoptosis in many tumor cell lines. CDDP has been administered by infusion to avoid severe toxicity. Recently, it has been reported that changes in survivin expression or function may lead to tumor sensitization to chemical and physical agents. The aim of this study was to determine whether a dominant-negative mouse survivin mutant could enhance the anti-tumor activity of CDDP.</p> <p>Methods</p> <p>A plasmid encoding the phosphorylation-defective dominant-negative mouse survivin threonine 34→alanine mutant (survivin T34A) complexed to a DOTAP-chol liposome (Lip-mS) was administered with or without CDDP in Lewis Lung Carcinoma (LLC) cells and in mice bearing LLC tumors, and the effects on apoptosis, tumor growth and angiogenesis were assessed. Data were analyzed using one-way analysis of variance(ANOVA), and a value of <it>P </it>< 0.05 was considered to be statistically significant.</p> <p>Results</p> <p>LLC cells treated with a combination of Lip-mS and CDDP displayed increased apoptosis compared with those treated with Lip-mS or CDDP alone. In mice bearing LLC tumors and treated with intravenous injections of Lip-mS and/or CDDP, combination treatment significantly reduced the mean tumor volume compared with either treatment alone. Moreover, the antitumor effect of Lip-mS combined with CDDP was greater than their anticipated additive effects.</p> <p>Conclusion</p> <p>These data suggest that the dominant-negative survivin mutant, survivin T34A, sensitized LLC cells to chemotherapy of CDDP. The synergistic antitumor activity of the combination treatment may in part result from an increase in the apoptosis of tumor cells, inhibition of tumor angiogenesis and induction of a tumor-protective immune response.</p
Diagnosis Analysis of 4 TCM Patterns in Suboptimal Health Status: A Structural Equation Modelling Approach
Background. We illustrated an example of structure equation modelling (SEM) in the research on SHS to explore the diagnosis of the Sub optimal health status (SHS) and provide evidence for the standardization of traditional Chinese medicine (TCM) patterns in SHS. And the diagnosis of 4 TCM patterns in SHS was evaluated in this analysis. Methods. This study assessed data on 2807 adults (aged 18 to 49) with SHS from 6 clinical centres. SEM was used to analyze the patterns of SHS in TCM. Parameters in the introduced model were estimated by the maximum likelihood method. Results. The discussed model fits the SHS data well with CFI = 0.851 and RMSEA = 0.075. The direct effect of Qi deficiency pattern on dampness pattern had the highest magnitude (value of estimate is 0.822). With regard to the construct of “Qi deficiency pattern”, “fire pattern”, “stagnation pattern” and “dampness pattern”, the indicators with the highest load were myasthenia of limbs, vexation, deprementia, and dizziness, respectively. It had been shown that estimate factor should indicate the important degree of different symptoms in pattern. Conclusions. The weights of symptoms in the respective pattern can be statistical significant and theoretical meaningful for the 4 TCM patterns identification in SHS research. The study contributed to a theoretical framework, which has implications for the diagnosis points of SHS
- …