15,332 research outputs found

    Type-Directed Weaving of Aspects for Higher-order Functional Languages

    Get PDF
    Aspect-oriented programming (AOP) has been shown to be a useful model for software development. Special care must be taken when we try to adapt AOP to strongly typed functional languages which come with features like a type inference mechanism, polymorphic types, higher-order functions and type-scoped pointcuts. Our main contribution lies in a seamless integration of these two paradigms through a static weaving process which deals with around advices with type-scoped pointcuts in the presence of higher-order functions. We give a source-level type inference system for a higher-order, polymorphic language coupled with type-scoped pointcuts. The type system ensures that base programs are oblivious to the type of around advices. We present a type-directed translation scheme which resolves all advice applications at static time. The translation removes advice declarations from source programs and produces translated code which is typable in the Hindley-Milner system

    Distributed watermarking for secure control of microgrids under replay attacks

    Full text link
    The problem of replay attacks in the communication network between Distributed Generation Units (DGUs) of a DC microgrid is examined. The DGUs are regulated through a hierarchical control architecture, and are networked to achieve secondary control objectives. Following analysis of the detectability of replay attacks by a distributed monitoring scheme previously proposed, the need for a watermarking signal is identified. Hence, conditions are given on the watermark in order to guarantee detection of replay attacks, and such a signal is designed. Simulations are then presented to demonstrate the effectiveness of the technique

    A novel hybrid finite element analysis of inplane singular elastic field around inclusion corners in elastic media

    Get PDF
    AbstractThis paper deals with the inplane singular elastic field problems of inclusion corners in elastic media by an ad hoc hybrid-stress finite element method. A one-dimensional finite element method-based eigenanalysis is first applied to determine the order of singularity and the angular dependence of the stress and displacement field, which reflects elastic behavior around an inclusion corner. These numerical eigensolutions are subsequently used to develop a super element that simulates the elastic behavior around the inclusion corner. The super element is finally incorporated with standard four-node hybrid-stress elements to constitute an ad hoc hybrid-stress finite element method for the analysis of local singular stress fields arising from inclusion corners. The singular stress field is expressed by generalized stress intensity factors defined at the inclusion corner. The ad hoc finite element method is used to investigate the problem of a single rectangular or diamond inclusion in isotropic materials under longitudinal tension. Comparison with available numerical results shows the present method is an efficient mesh reducer and yields accurate stress distribution in the near-field region. As applications, the present ad hoc finite element method is extended to discuss the inplane singular elastic field problems of a single rectangular or diamond inclusion in anisotropic materials and of two interacting rectangular inclusions in isotropic materials. In the numerical analysis, the generalized stress intensity factors at the inclusion corner are systematically calculated for various material type, stiffness ratio, shape and spacing position of one or two inclusions in a plate subjected to tension and shear loadings

    Evidence for Dirac Fermions in a honeycomb lattice based on silicon

    Full text link
    Silicene, a sheet of silicon atoms in a honeycomb lattice, was proposed to be a new Dirac-type electron system similar as graphene. We performed scanning tunneling microscopy and spectroscopy studies on the atomic and electronic properties of silicene on Ag(111). An unexpected 3×3\sqrt{3}\times \sqrt{3} reconstruction was found, which is explained by an extra-buckling model. Pronounced quasi-particle interferences (QPI) patterns, originating from both the intervalley and intravalley scattering, were observed. From the QPI patterns we derived a linear energy-momentum dispersion and a large Fermi velocity, which prove the existence of Dirac Fermions in silicene.Comment: 6 pages, 4 figure
    corecore