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This paper deals with the inplane singular elastic field problems of inclusion corners in
elastic media by an ad hoc hybrid-stress finite element method. A one-dimensional finite
element method-based eigenanalysis is first applied to determine the order of singularity
and the angular dependence of the stress and displacement field, which reflects elastic
behavior around an inclusion corner. These numerical eigensolutions are subsequently
used to develop a super element that simulates the elastic behavior around the inclusion
corner. The super element is finally incorporated with standard four-node hybrid-stress
elements to constitute an ad hoc hybrid-stress finite element method for the analysis of
local singular stress fields arising from inclusion corners. The singular stress field is
expressed by generalized stress intensity factors defined at the inclusion corner. The ad
hoc finite element method is used to investigate the problem of a single rectangular or dia-
mond inclusion in isotropic materials under longitudinal tension. Comparison with avail-
able numerical results shows the present method is an efficient mesh reducer and yields
accurate stress distribution in the near-field region. As applications, the present ad hoc
finite element method is extended to discuss the inplane singular elastic field problems
of a single rectangular or diamond inclusion in anisotropic materials and of two interacting
rectangular inclusions in isotropic materials. In the numerical analysis, the generalized
stress intensity factors at the inclusion corner are systematically calculated for various
material type, stiffness ratio, shape and spacing position of one or two inclusions in a plate
subjected to tension and shear loadings.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Much attention has been paid to inclusion problems by many researchers since the first solution to the ellipsoidal inclu-
sion problems by Eshelby (Eshelby, 1957). The application background is found in microstructures, composite material struc-
tures and others (Mura, 1987; Nemat-Nasser and Muneo, 1999; Buryachenko, 2007).

To solve elastic inclusion problems, both the analytical and numerical methods were applied. Among the works on ana-
lytical solution, the representative ones that should be mentioned are those of Eshelby (1957), Kröner (1958), Hill (1965),
Budiansky (1965), Mori and Tanaka (1973) as well as Kushch et al. (2005). However, these analytical solutions are either lim-
ited to very simple geometries such as ellipsoidal inclusions or require high level of mathematical competence. Therefore,
most engineering problems of ellipsoidal or irregular shaped inclusions have to resort to numerical methods such as the fi-
nite element method (FEM), the volume integral equation method (VIEM), the boundary integral equation method (BIEM)
and others.
. All rights reserved.
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The conventional FEM has been used to solve various kinds of inclusions (Ghosh and Mukhopadhyay, 1993; Nakamura
and Suresh, 1993 as well as Thomson and Hancock, 1984). However, due to the need for domain discretization, a lot of finite
elements must be used for more accurate numerical results. The VIEM is an effective method for the analysis of the inclu-
sions embedded in an isotropic matrix or for coating problems (Buryachenko and Bechel, 2000; Dong and Bonnet, 2002;
Dong et al., 2002; Lee et al., 2001 and Nakasone et al., 2000). Compared with the conventional FEM, the VIEM only discretizes
the inclusion parts. However, it is difficult to extend this approach to the anisotropic medium due to the use of complex fun-
damental solutions. Relative to the conventional FEM and VIEM, the BIEM is a more efficient and accurate one for solving
inclusion problems. It has been successfully applied for the solution of inclusion problems of various shapes (Tan et al.,
1992; Chen and Nisitani, 1993; Chen, 1994; Noda et al., 2000; Dong et al., 2003). However, the method also needs the fun-
damental solution, which is not easy-to-obtain or impossible-to-obtain for composite materials; and the boundary integral
equation must be formulated for each inclusion, which might be inconvenient for solving problems containing many inclu-
sions of irregular shapes. In comparison with the BIEM in the accuracy of numerical solutions, the hybrid-stress finite ele-
ment method developed more than 40 years ago by Pian (1964) is now well recognized as a powerful and easy-to-use tool
for solving a variety of two-dimensional linear elasticity problems containing a single or multiple singular points (Tong et al.,
1973; Tong, 1977; Moriya, 1984; Lee and Gao, 1995; Zhang and Katusbe, 1995, 1997; Wang et al., 2004 and the authors,
2001a, 2001b, 2007a, 2007b, 2008). This makes the method attractive and potentially very useful in micromechanics of fi-
brous composites because it provides an efficient tool for analyzing the advanced one-inclusion or many-inclusion model
problems with an accurate account for elastic behavior in the near-field region. In the numerical study of composite mate-
rials reinforced by circular inclusions, the method has been applied successfully only by Zhang and Katusbe (1995, 1997).

At the same time, to the best of the author’s knowledge, the studies related to interacting non-ellipsoidal inclusions by the
hybrid-stress finite element method are absent. Moreover, a numerical solution of even a single non-ellipsoidal inclusion by
the hybrid-stress finite element method could not be found in the literature. This may result from a fact that constructing a
super inclusion corner element needs the analytical solution of the singularity order and angular variation of singular elastic
field that reflect local elastic behavior around the inclusion corner, whose derivation introduces formidable mathematical
difficulties for most composite materials.

In the present work, a one-dimensional finite element formulation developed by Sze and Wang (2000), Sze et al. (2001) is
first applied for the numerical solution of the order of stress singularities and the angular variation of stress and displace-
ments fields. These numerical fields are subsequently used to develop a super element that simulates the elastic behavior
around an inclusion corner. The super element is finally incorporated with standard four-node hybrid-stress elements to
constitute an ad hoc hybrid-stress finite element method for the analysis of local singular stress fields arising from inclusion
corners. To compare the available reference solutions, the ad hoc finite element method is used to solve the problem of a
single rectangular or diamond inclusion in isotropic materials under longitudinal tension. To present its applicability, the
present ad hoc finite element method is extended to discuss the inplane singular elastic field problems of a single rectangular
inclusion in an anisotropic plate and of two interacting rectangular inclusions in an isotropic plate. In the numerical analysis,
the generalized stress intensity factors at the inclusion corner are systematically calculated for various material types, stiff-
ness ratio, shape and spacing position of one and two inclusions in a plate subjected to tension and shear loadings.

2. Expressions for total elastic fields around an inclusion corner

Consider an infinite plate containing an irregular-shaped inclusion, as shown in Fig. 1. The singular stress field around the
inclusion corner is analyzed. It is convenient to use a local coordinate system centered at the corner to analyze the local elas-
tic behavior. Fig. 2 shows the local configuration around the corner o. In Fig. 2, two dissimilar wedges with subtending angles
of a and a1 + a2 (a + a1 + a2 = 2p), respectively, are bonded perfectly along both of their interfaces. Each of which may be
made of an isotropic, anisotropic, piezoelectric or else material. Wedge 1 is occupied by domain X1, and wedge 2 by domain
X2. Let (r, h) be a local polar coordinate system centered at the corner o, so that the axis of h = 0 is the bisector of the two
wedges. Therefore, when setting h = 0, we have a1 = a2. The stress and displacement field near the corner is evaluated by
using a one-dimensional eigenanalysis finite element formulation. The formulation is straightforward as will be shown
herein.
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Fig. 1. An infinite plate containing a non-ellipsoidal inclusion.
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Fig. 2. Local coordinate system near the inclusion corner.
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According to previous studies (Sze and Wang, 2000; the authors, 2001a and 2001b), the following one-dimensional finite
element characteristic formulation on stress singularities around the corner is given as:
X

e1þe2

½ðdqeÞTðk2ePe þ k eQ e þ eReÞqe� ¼ 0 ð1Þ
in which
P

e1þe2 represents the assemblage of elements belonging to wedge domain 1 and 2; k are eigenvalues (called as
stress singularity orders as well); qe are eigenvectors or generalized nodal displacement components in the element ‘‘e”;
the element matrices ePe; eQ e and ePe are defined in Sze and Wang (2000) as well as the authors (2001a and 2001b). Eq. (1)
can be transformed into a standard characteristic equation by proper manipulations, and then eigenvalues k and eigenvec-
tors qe are solved from the equation with standard numerical subroutines. The element matrices ePe; eQ e and ePe are evaluated
using numerical integration by means of Gaussian quadrature for isotropic materials. However, for anisotropic materials
whose properties are angular functions, the matrices must be transformed at each Gauss point during the numerical eval-
uation of the integrals, so that the anisotropic in the material is correctly taken into consideration.

When either one of domain X1 or domain X2 or both are polarized piezoelectric materials, some modifications to one-
dimensional eigenanalysis finite element formulation (1) should correspondingly be made due to the additional piezoelectric
effect. To save space, we are not going to discuss how the eigenanalysis finite element formulation of piezoelectric materials
is modified herein. The interested readers can refer to Sze et al. (2001) and our previous publications (2006, 2007a, 2007b)
for more details.

By using the numerical solutions of singularity orders kn and generalized nodal displacement components qe(n) from Eq.
(1), the general expressions of total asymptotic displacements u (r, h) and stresses r(r,h) around the inclusion corner in
elastic materials are written as
uðr; hÞ ¼
XNþM

n¼1

bðnÞrknþ1UðnÞðhÞ ¼
XN

n¼1

ðbðnÞR UðnÞR ðr; hÞ þ bðnÞI UðnÞI ðr; hÞÞ þ
XM

n¼1

bðnÞUðnÞðr; hÞ ¼ Uðr; hÞb ð2Þ

rðr; hÞ ¼
XNþM

n¼1

bðnÞrkn �rðnÞðhÞ ¼
XN

n¼1

ðbðnÞR RðnÞR ðr; hÞ þ bðnÞI RðnÞI ðr; hÞÞ þ
XM

n¼1

bðnÞRðnÞðr; hÞ ¼ Rðr; hÞb ð3Þ
where subscripts R and I indicates the real part and imaginary part of a complex variable, respectively and i ¼
ffiffiffiffiffiffiffi
�1
p

; b are
unknown coefficients to be determined, i.e., b ¼ ½bð1ÞR bð1ÞI � � � b

ðNÞ
R bðNÞI bð1Þ � � � bðMÞ�T; the quantity with subscript P is an interim

one in the polar coordinate system; and N represents the number of complex singularity order kn truncated and M the num-
ber of real singularity order kn truncated. Moreover, in Eq. (1), it has been arranged as kn 6 kn+1 (herein equal means multiple
roots), and in the scope of fracture mechanics, Re(k) < �1 should be excluded in the series. U(n)(r, h),R(n)(r, h) and UðnÞl ðr; hÞ,
RðnÞl ðr; hÞðl ¼ R; IÞ can be respectively computed from the non-dimensional angular distributions of UðnÞðhÞ and �rðnÞðhÞ which
are obtained from the singularity orders kn and the eigenvectors qe(n).

3. Super inclusion corner element stiffness matrix

Sound variational basis and high coarse mesh accuracy of super crack-tip and wedge-tip hybrid elements for conventional
materials have been discussed (Tong et al., 1973 and the authors, 2001b). Similarly, to formulate finite element calculations
for the singular elastic fields around an inclusion corner in elastic materials, a super n-sided polygonal inclusion corner ele-
ment embedded with a part of an inclusion corner, as shown in Fig. 3(a), will be developed based on Eqs. (2) and (3).

Our goal is to establish the relationship between the element’s nodal force and displacement, or simply, to formulate the
element stiffness matrix. The key idea in formulating this ad hoc element is to decompose the original problem (Fig. 3(a)) into
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two boundary value problems as shown in Fig. 3(b) and (c): (1) a specified mixed boundary value problem in the matrix do-
main X1 with boundaries C1,C1 and C2; (2) a specified mixed boundary value problem in the non-ellipsoidal inclusion do-
main X2 with boundaries C2, C1 and C2. C1 and C2 are the element’s outer boundary with neighboring elements, and C1 and
C2 are inner interface between the matrix and the inclusion. Following the Hellinger-Reissner principle as well as Zhang and
Katsube’s work (1995), similarly, we define the following two separate hybrid functionals for these two problems:
For problem 1Z
1
� � Z Z
Fig. 3.
pe
m ¼

X1 2
rT

mSmrm � rT
mDum dX�

C1
tT

mð~uð1Þ � umÞdSþ
C1þC2

ð~tð1ÞÞTumdS ð4Þ
For problem 2Z
1
� � Z Z
pe
I ¼

X2 2
rT

I SIrI � rT
I DuI dX�

C2
tT

I ð~uð2Þ � uIÞdSþ
C1þC2

ð~tð2ÞÞTuIdS ð5Þ
where u, r, t and S are, respectively, the stress, displacement, boundary traction vectors and the elastic compliance matrix; D
is the matrix differential operator relating strains to displacements; and the symbol � represents a specified quantity. Based
on the hybrid-stress finite element method (Pian, 1964), the boundary displacements ~uð1Þ and ~uð2Þ are assumed separately
from u and are expressed in terms of the displacements of the element. The boundary tractions ~tð1Þ and ~tð2Þ are assumed
to be specified and are actually unknown.

The stationary values of the two functionals defined by Eqs. (4) and (5) yield the following two sets of equations:

For problem 1

T 1
D rm ¼ 0; Smrm ¼ Dum in X ð6Þ
tm ¼ nð1Þrm on C1; C1 and C2 ð7Þ
u ¼ ~uð1Þ on C1; t ¼ ~tð1Þ on C1 and C2 ð8Þ
For problem 2

T 2
D rI ¼ 0; SIrI ¼ DuI in X ð9Þ
tI ¼ nð2ÞrI on C2; C1 and C2 ð10Þ
u ¼ ~uð2Þ on C2; t ¼ ~tð2Þ on C1 and C2 ð11Þ
in which n(i) is a 2 � 3 matrix of the unit normal to boundary C(i) and C(i). It is seen from the above equations that the true
solutions of the two problems minimize the hybrid functionals. We may simplify the functional by constructing the stress r
and displacement u fields in such a manner that Eqs. (6), (7), (9) and (10) are automatically satisfied. By doing this and using
the divergence theorem over X1 and X2, the two functionals are reduced to
pe
m ¼

1
2

Z
C1

tT
mumdS�

Z
C1

tT
m

~uð1ÞdSþ
Z

C1þC2

ð~tð1ÞÞTumdS� 1
2

Z
C1þC2

tT
mumdS ð12Þ

pe
I ¼

1
2

Z
C2

tT
I uIdS�

Z
C2

tT
I
~uð2ÞdSþ

Z
C1þC2

ð~tð2ÞÞTuIdS� 1
2

Z
C1þC2

tT
I uIdS ð13Þ
In order to recover the solution for the original problem from those of two decomposed problems, the traction reciprocity
t conditions and the displacement u compatibility conditions are necessary to be imposed:
= +

(1)u

(2)u

(1)n̂

(2)n̂

(1)t

(2)t
1Ω
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1C

2C

1Γ

2Γ
1C

1Ω

(1)u (1)n̂

1Γ

2Γ

(1)t2Ω
2C

(2)u

(2)n̂

2Γ

(2)t
∼

∼

∼

∼
∼

∼

∼

∼a b c

Element decomposition: (a) original element; (b) inclusion domain with mixed boundary values; (c) matrix domain with mixed boundary values.
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uI ¼ um on C1 and C2 ð14Þ
tð1Þ ¼ �tð2Þ; tm ¼ �tI on C1 and C2 ð15Þ
The functional pe for the original problem is rewritten as pe ¼ pe
m þ pe

I . Therefore, adding Eqs. (12) and (13), and noting
conditions (14) and (15), we have
pe ¼ 1
2

Z
C1

tT
mumdSþ 1

2

Z
C2

tT
I uIdS�

Z
C1

tT
m

~uð1ÞdS�
Z

C2
tT

I
~uð2ÞdS ð16Þ
If we write tm and tI as t, um and uI as u, and ~uð1Þ and ~uð2Þ as ~u, Eq. (16) is rewritten as
pe ¼ 1
2

Z
C

tTudS�
Z

C
tT ~udS ð17Þ
where C = C(1) + C(2). Note the integrands u and t = nr of Eq. (23) are integrated in the Cartesian coordinate system, which
should be obtained from u(r, h) and r(r, h) in the polar coordinate system given in Eqs. (2) and (3).

Using Eqs. (2), (3) and (17), we have the following stiffness matrix of the super inclusion corner element:
KS�I ¼ GTH�1G ð18Þ
where G and H are one-dimensional integrals along the boundaries of the super inclusion corner element as shown in Fig. 4,
namely:
H ¼ 1
2

Z
C
½ðnRðx; yÞÞT Uðx; yÞ þ ðUðx; yÞÞTðnRðx; yÞÞ�dS; G ¼

Z
C
ðnRðx; yÞÞT LdS

L ¼ 1� s
l

� �
I2

s
l

I2

h i

in which s is the distance measured from a point p on the integration boundary segment to the first node of integration
boundary segment as shown in Fig. 4, and l is the length between two nodes of the integration boundary segment; I2 is
the second order identity matrix.

This ad hoc element is used to model the near-field region and is in conjunction with the conventional four-node hybrid-
stress elements in the far-field region for the analysis of displacement and stress fields in the entire region, thus finally sin-
gular stress fields around the inclusion corner are obtained.

4. Definition of generalized stress intensity factor (GSIF)

4.1. GSIF around an inclusion corner in isotropic materials

As for the problem of non-ellipsoidal inclusions in isotropic materials, Chen and Nisitani (1993) and Chen (1994) used the
complex function approach and the body force method to study it. According to their studies, the singular stress field around
the inclusion corner can be expressed, in a simple form, as a sum of two items: one written in a form of rk1 is corresponding
to the mode I deformation and the other written in a form of rk2 the mode II deformation. The stress fields due to the mode I
and II deformations are symmetric and skew-symmetric with respect to the axis of h = 0 (see Fig. 2), respectively. The orders
of stress singularity for the mode I and II, k1 and k2, are generally different, and determined from Eq. (1), respectively and
arranged as k2 6 k1. Therefore, when singular stresses at every h are calculated from Eq. (3), For example, at points on the
axis h = 0, the singular stresses rhh for the mode I and rrh for the mode II are related with the values of generalized stress
intensity factors K I;k1 and K II;k2 , respectively, as follows:
2 3 4
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o x
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Fig. 4. Configuration of a multiple-node super inclusion corner element.
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K I;k1 ¼
1

f I
hh;1ð0Þ

lim
r!0

ffiffiffi
2
p

r�k1rhhðr; h ¼ 0Þ ð19Þ

K II;k2 ¼
1

f II
rh;1ð0Þ

lim
r!0

ffiffiffi
2
p

r�k2rrhðr; h ¼ 0Þ ð20Þ
in which the angular functions f I
hh;1ð0Þ and f II

rh;1ð0Þ are given by Chen (1994).

4.2. GSIF around an inclusion corner in anisotropic materials

With regard to the problem of non-ellipsoidal inclusions in anisotropic materials, if the bisector of the two wedges is alien
with x-axis (see Fig. 2) and the principal axis of material is consistent with the coordinate axis, the distribution of singular
stress filed, like that in isotropic materials, is symmetric and skew-symmetric with respect to the axis of h = 0. The general-
ized stress intensity factor (GSIF) can be still computed from Eqs. (19) and (20). Otherwise, the distributions of singular stress
fields around an inclusion corner in anisotropic materials are very complicated and the formulations aforementioned cannot
be used. Under prerequisites for convenience in use and safety in components, the strongest singularity and the stresses on
the interface are usually used to define the generalized stress intensity factor (GSIF), namely:
K1 ¼ lim
r!0

ffiffiffi
2
p

r�k1rhhðr; h0Þ; K2 ¼ lim
r!0

ffiffiffi
2
p

r�k1rrhðr; h0Þ ð21Þ
where k1 is the order of dominant singularity and h0 is the angle between the interface and the bisector as shown in Fig. 4.

5. Application

A number of numerical examples are considered to demonstrate the efficacy of the present ad hoc hybrid-stress finite ele-
ment technique in this section. Some of them have been discussed in the previous studies (Chen, 1994; Chen and Nisitani,
1993), and the others are new.

5.1. Material property

Several kinds of materials such as isotropic materials, anisotropic materials and piezoelectric materials are used in the
present numerical study. The relevant non-zero materials parameters with respect to their principal material directions 1,
2 and 3 (also poling direction for piezoelectric materials) are given below:

(1) Isotropic material
Pb E ¼ 17� 103 N=mm2
; t ¼ 0:42

Al E ¼ 68:9� 103 N=mm2
; t ¼ 0:25

Cu E ¼ 129:8� 103 N=mm2
; t ¼ 0:343

Ni E ¼ 210� 103 N=mm2
; t ¼ 0:31
(2) Ceramic material
Al2O3: E = 359 � 103 N/mm2, t = 0.20

(3) High modulus epoxy-matrix composite
E1 ¼ 137:9; E2 ¼ 14:48; E3 ¼ 14:48;l12 ¼ 4:98� 103 N=mm2;

t12 ¼ 0:21; t21 ¼ 0:022; t32 ¼ 0:21
(4) Piezoelectric material
PZT5H:

c11 ¼ 126:0; c12 ¼ 55:0; c13 ¼ 53:0; c33 ¼ 117:0; c44 ¼ 35:3� 103 N=mm2;

e15 ¼ 23:3; e31 ¼ �6:5; e33 ¼ 17:0� 106 pC=mm2;

j11 ¼ 15100:0;j33 ¼ 13000:0� 106 pC=Nmm2
5.2. Benchmark example

As shown in Fig. 5(a) and (b), an infinite plate containing a single rectangular or diamond inclusion under remote loading is
used as benchmark examples to validate the present method to be effective and applicable. Suppose that domainX1 is occupied
by an isotropic material with elastic constants (l1,t1), and domainX2 by an isotropic material with elastic constants (l2, t2). For
the sake of comparison, the dimensionless stress intensity factors FI, k1

and FII, k2
are used as:
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For a rectangular inclusion
Table 1
FI,k1

and

Sizes (m

2.0b � 2

1.0b � 1

0.2b � 0
F I;k1 ¼
K I;k1

r1yyb�k1
; F II;k2 ¼

K II;k2

s1xyb�k2
ð22Þ
For a diamond inclusion
F I;k1 ¼
K I;k1

r1yyl�k1
; F II;k2 ¼

K II;k2

s1xyl�k2
ð23Þ
x in which b is half the width of the rectangular inclusion and l half the width of the diamond inclusion (see Fig. 5); r1yy and
s1xy are tension load and shear load, respectively.

5.2.1. Convergence of numerical results
In this part, to discuss the effects of the size of the super inclusion corner element on the numerical results, an infi-

nite plate containning an isotropic square inclusion (b = l) in isotropic materials under remote loading is considered, as
shown in Fig. 5(a). The plane stress condition is assumed. Their comparisons are respectively given in Tables 1 and 2.
Table 1 is corresponding to the dimensionless stress intensity factors FI, k1

and FII, k2
for a square inclusion with different

stiffness ratios of materials under tension loading r1yy, and Table 2 under shear loading s1xy. Taking l2/l1 = 10 under ten-
sion loading r1yy as an example, the analytical solutions (Chen, 1994) of FI,k1

and FII,k2
are 0.2402 and �0.4876, respec-

tively, and the present numerical results of FI, k1
and FII, k2

are, respectively, 0.1846 and �0.4737 at size 2.0b � 2.0b,
and 0.2397 and �0.4860 at size 0.2b � 0.2b. It is seen that the discrepancies between the analytical solutions and the
present numerical results are respectively �23.15% and �2.85% at size 2.0b � 2.0b, but �0.21% and �0.33% at size
0.2b � 0.2b. Therefore, we can draw a conclusion that the errors of numerical results decrease with decreasing the size
of the inclusion corner element. In the numerical analysis, one super inclusion corner element and 285 four-node quad-
rilateral elements are used.

5.2.2. Comparisons with available solutions
As the first benchmark example, herein an infinite plate containing an isotropic rectangular inclusion in isotropic mate-

rials under only tension loading, shown in Fig. 5(a), is considered under the condition of plane stress. The singular stress
fields around the inclusion corner A are analyzed. To simulate the infinite effect, the width and the height of the plate are
set to be w = 20b and h = 10l, respectively, in which b andlare respectively half the width and height of the inclusion. Due
to the symmetry of the geometry and loading, only one-quarter of the geometry is needed for finite element mesh division.
Configuration of mesh division around the rectangular inclusion corner is given in Fig. 6. To verify the present method, the
FII,k2
for a square inclusion under uniaxial tension loading r1yy

m) SIFs l2/l1

0.1 2 10 100

.0b FI,k1
0.3875 0.2015 0.1846 0.2527

FII,k2
2.4033 �2.3271 �0.4737 �0.3675

.0b FI,k1
0.3861 0.1988 0.2237 0.2530

FII,k2
2.4549 �2.3293 �0.4795 �0.3687

.2b FI,k1
0.3837 0.1967 0.2397 0.2547

FII,k2
2.4727 �2.3462 �0.4860 �0.3546

1Ω
xyτ ∞

xxσ ∞yyσ ∞

1Ω
xyτ ∞

xxσ ∞yyσ ∞

2Ω

2b

2l γ

2l

2Ω

A

A

x

y

x

y

B

a b

Fig. 5. Configuration of inclusions treated in the numerical examples.



Table 2
FI,k1

and FII,k2
for a square inclusion under shear loading s1xy

Sizes (mm) SIFs l2/l1

0.1 2 10 100

2.0b � 2.0b FI,k1
�11.7980 0.1516 0.6130 0.6673

FII,k2
�0.0005 �0.0043 0.0043 0.0029

1.0b � 1.0b FI,k1
�11.8577 0.1528 0.6346 0.6525

FII,k2
�0.0016 �0.0019 �0.0004 0.0005

0.2b � 0.2b FI,k1
�11.7653 0.1524 0.6341 0.6319

FII,k2
�0.0021 �0.0018 �0.0010 �0.0002
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relationships between the dimensionless stress intensity factors FI,k1
as well as FII,k2

against l/b is investigated again, and it can
be seen from Fig. 7(a) and (b) that the present numerical results coincide with those of Chen (1994). In the numerical cal-
culation, one super inclusion corner element and 285 four-node quadrilateral elements are employed.

As shown in Fig. 5(b), an infinite plate containing an isotropic diamond inclusion in isotropic materials only under tension
loading is considered as the second benchmark example. The plane stress condition is assumed. The singular stress fields
around the inclusion corner A are analyzed. To simulate the infinite effect, the width and the height of the plate are set
to be w = 40l and h = 40l, respectively, where l is half the width of the diamond inclusion. Due to the symmetry of the geom-
etry and loading, in the numerical calculations, only the right area of the geometry in Fig. 5(b), i.e., the right area of 40l � 40l,
is needed for finite element mesh division. Diagram of the finite element mesh division is shown in Fig. 8. Table 3 describes
the relationship between the dimensionless stress intensity factors FI,k1

as well as FII,k2
against the ratio of shear material con-

stants l2/l1. We can see from Table 3 that the present numerical results are in good agreement with those of Chen (1994).
The maximum error is less than 2.91%. In the numerical analysis, one super inclusion corner element and 508 four-node
quadrilateral elements are adopted.

In a word, comparisons aforementioned show that the present ad hoc hybrid-stress finite element procedure yields rap-
idly converging numerical solutions with higher accuracies and fewer elements.
4 node element 

super element 

common node 

Fig. 6. Configuration of mesh division around a rectangular corner.

a b

Fig. 7. Relationships between F I;k1 , F II;k2 and l/b at corner A shown in Fig. 7(a).under tension loading.



node

super
element

4-node
element

Fig. 8. Diagram of finite element mesh division for a diamond inclusion.

Table 3
Comparison of dimensionless stress intensity factors F I;k1 and F II;k2 with Chen’s (1994)

Angle c l2/l1 FI;k1 ðr1y Þ FI;k1 ðr1x \ r1y Þ FII;k2 ðr1xyÞ

Present Error Present Error Present Error

60� 0.0001 1.148 0.17 1.031 �0.19 1.595 �0.44
0.1 0.713 0.42 0.651 �0.46 1.499 �0.20
10 �0.106 2.91 0.311 �2.20 – –
10000 �0.111 �0.89 0.349 �1.69 �0.556 �1.07

120� 0.0001 1.462 �0.14 1.044 �0.57 1.627 �0.49
0.1 1.048 �0.47 0.637 �1.09 1.511 �0.40
10 �0.006 – 0.312 �0.64 – –
10000 �0.012 0.00 0.355 0.28 �0.545 �1.80
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5.3. Numerical results and discussions

5.3.1. Interaction between two square isotropic inclusions in isotropic materials
For many heterogeneous materials, the inclusion phases often exhibit irregularities in geometry and randomness in dis-

tribution. Therefore, the knowledge of multiple inclusion interactions is very important in evaluating the strength of mate-
rials. As an application, an infinite isotropic plate containing two square isotropic inclusions is considered under remote
loadings as shown in Fig. 9. The plane strain condition is assumed. The singular stress fields around the inclusion corner
o is analyzed. To simulate the infinite effect, the width and the height of the plate are set to be w = 20b and h = 20b, respec-
tively, where b is half the width of the square inclusion. Due to the symmetry of the geometry and loading, in the numerical
calculations, only one-quarter of the geometry in Fig. 9, i.e., one-quarter of 20b � 20b, is needed for finite element mesh divi-
sion. The numerical solutions of the dimensionless generalized stress intensity factors FI,k1

and FII,k2
under only tension load-

ing r1yy are computed and listed in Table 4. From the Table 4 it can be seen that, as l2/l1 < 1, the numerical results of FI,k1
and

FII,k2
decrease with the increase of the space distance d between the two square inclusions and they are all greater than zero,

implying that both tension fracture and shear fracture might occur at the inclusion corner but shear-oriented fracture might
occur; as l2/l1 > 1, FI,k1

increases with the increase of the space distance d and is greater than zero, while FII,k2
varies irreg-
2b

Mat.1

2bd

Mat.2Mat.2

r
θ

yσ ∞ xyτ ∞

xσ ∞

xyτ ∞

o

Fig. 9. Double square inclusions in an infinite plate.



Table 4
Dimensionless GSIFs FI,k1

and FII,k2
around the corner o in Fig. 9 under tension loading r1yy

d/b SIFs l2/l1

0.1 2 10 100

0.2 FI,k1
0.4494 0.1888 0.2075 0.2090

FII,k2
2.6723 �2.3365 �0.4886 �0.2971

0.4 FI,k1
0.4309 0.1904 0.2104 0.2118

FII,k2
2.6094 �2.3418 �0.4878 �0.2965

0.6 FI,k1
0.4201 0.1919 0.2135 0.2150

FII,k2
2.5711 �2.3448 �0.4868 �0.2959

0.8 FI,k1
0.4131 0.1932 0.2165 0.2180

FII,k2
2.5450 �2.3464 �0.4859 �0.2952

1.0 FI,k1
0.4082 0.1942 0.2191 0.2206

FII,k2
2.5261 �2.3474 �0.4850 �0.2947
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ularly with increasing d and is always less than zero, implying that both tension and shear fracture might occur at the inclu-
sion corner but the shear fracture direction is opposite to that of l2/l1 < 1. In addition, with increasing l2/l1 ratio, the
dimensionless generalized stress intensity factors FI,k1

and FII,k2
are affected by only the space distance d regardless of l2/

l1 and finally both tension and shear fracture might occur simultaneously. In the numerical computation, two super inclu-
sion corner element and 504 four-node quadrilateral elements are used.

5.3.2. A single rectangular isotropic inclusion in composite materials
In this part, as shown in Fig. 5(a), an infinite anisotropic plate containing a single rectangular isotropic inclusion is con-

sidered under tension loading. Suppose that domain X1 is occupied by a high modulus epoxy-matrix composite material, and
domain X2 by an isotropic material which may be lead (Pb), aluminum (Al), copper (Cu), nickel (Ni) and ceramics (Al2O3).
The singular stress fields around the inclusion corner A are analyzed. To simulate the infinite effect, the width and the height
of the plate are set to be w = 20b and h = 10l, respectively. Diagram of mesh division around the rectangular inclusion corner
is given in Fig. 6. Under tension loading r1yy, the generalized stress intensity factors GSIFs K1 and K2 near corner A, with vary-
ing l/b, along the interface AB (h0 = 3p/4, see Fig. 4) between the matrix and the inclusion are plotted in Fig. 10. We can see
from the Figure that, as l/b < 10, the GSIFs K1 and K2 for the copper and the ceramics inclusions vary quickly but slowly for the
lead and the aluminum inclusions, implying that the higher the modulus of the inclusion is, the greater the effect of the size
l/b on the GSIFs K1 and K2 is. As l/b > 10, the effect disappears basically. In other words, the inclusion will strengthen the
interface, and the higher the modulus of the inclusion is, the stronger the interface is.

5.3.3. A single rectangular piezoelectric inclusion in isotropic materials
In the field of intelligent structures, as sensors and actuators, piezoelectric materials are usually embedded or bonded on

a host material. As a mechanical model, these cases can be considered as a problem of an infinite plate containing a piezo-
electric inclusion. In the present paper, the geometrical configuration of the inclusion is rectangular. Therefore, the problem
can be described by Fig. 5(a). Suppose that domain X1 is occupied by an isotropic elastic material (metal) such as aluminum
or nickel, and domain X2 by an piezoelectric material such as PZT5H. The singular stress fields around the inclusion corner A
Pb

Al

Al2O3

Cu

Al2O3

Cu

Pb

Al

K
1b

λ 1
/σ

Log(l/b) Log(l/b)

yy

∞

K
1b

λ 1
/σ

yy

∞

a b

Fig. 10. The GSIFs K1bk1 =r1yy and K2bk1 =r1yy around corner A on interface AB of rectangular inclusion under tension r1yy vs. l/b.



Table 5
Comparisons of present results and ANSYS solutions of GSIFs for a single rectangular PZT4 inclusion in an aluminum matrix

l/b K1bk1 =r1yy K2bk1 =r1yy

Present ANSYS Errors Present ANSYS Errors

1 1.4018 (222) 1.5227 (4906) �8.62% 1.6134 1.773 �9.89%
3.162 1.3275 (327) 1.4430 (6306) �8.70% 1.0282 1.134 �10.29%
10 1.2659 (372) 1.3873 (15446) �9.59% 1.0016 1.1091 �10.73%
31.62 1.2593 (507) 1.3411 (16274) �6.50% 0.9912 1.0954 �10.51%
100 1.2535 (507) 1.3326 (17328) �6.31% 0.9821 1.0933 �11.32%

Table 6
Comparisons of present results and ANSYS solutions of GSIFs for a single rectangular PZT5H inclusion in an aluminum matrix

l/b K1bk1 =r1yy K2bk1 =r1yy

Present ANSYS Errors Present ANSYS Errors

1 1.6702 (222) 1.773 (4906) �6.15% 0.3995 0.3508 12.19%
3.162 1.2677 (327) 1.1335 (6306) 10.59% 0.2231 0.1962 12.06%
10 1.1926 (372) 1.1091 (15446) 7.00% 0.2057 0.18 12.49%
31.62 1.1339 (507) 1.0954 (16274) 3.40% 0.1815 0.17 6.34%
100 1.1136 (507) 1.0933 (17328) 1.82% 0.179 0.163 8.94%
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are analyzed. The plane strain condition is assumed. The finite element mesh division is the same as that of the proceeding
section. Electric potentials inside the metal and on the interface are assumed to be zero. Under tension loading, the general-
ized stress intensity factors K1 and K2 near corner A on the interface of h0 = 3p/4 (see Fig. 4) are calculated and listed in Tables
5 and 6. It can be seen from the Tables that both of K1 and K2 decrease with increasing log(l/b). In addition, to validate the
efficacy of present method, the numerical solutions of K1 and K2 from the commercial software ANSYS are also given in the
Tables. Comparisons of our present results with the solutions from ANSYS show that the present results are basically satis-
factory. Maximum error of both results is less than 13%. It should be noted that we are herein not going to discuss further the
effect of the number of elements used in the calculations on the computational results due to the limited space and the labo-
rious time. Note the figures in the parenthesis in the Tables are the number of elements used in the numerical solutions,
which shows much fewer elements are used in the present method.

6. Conclusions

In this paper, a new ad hoc hybrid-stress finite element is presented for the mechanical analysis of heterogeneous mate-
rials with elastic matrix and elastic inclusions. A super n-sided polygonal element embedded with a part of an elastic inclu-
sion corner is developed. The present method is validated by comparing its predictions with available numerical solutions of
problems with one isotropic rectangular or diamond inclusion in the infinite (large enough) isotropic plate. The analytical
singular stress distribution surrounding the inclusion corner is reproduced based on the developed method. Excellent agree-
ment is obtained. Versatility and applicability of the developed method are also demonstrated by examining the effect of
material type, stiffness ratio, shape and spacing position on the generalized stress intensity factors (GSIF) around the inclu-
sion corner.

Through our numerical analyses, some useful conclusions can be drawn as follows:

(1) The inclusion will strengthen the interface, and the higher the modulus of the inclusion is, the stronger the interface is.
(2) For the interaction problems of two rectangular inclusions in an isotropic material-matrix under tension loading, the

numerical results of FI,k1
and FII,k2

decrease with the increase of the space distance d between the two square inclusions
and shear-oriented fracture might occur as l2/l1 < 1; the GSIF FI,k1

and FII,k2
are affected only by the space distance d

regardless of tension loading and finally both tension and shear fracture might occur simultaneously as l2/l1 > 10.
(3) For single rectangular inclusion problems, when l/b > 10, the effect of l/b on the generalized intensity factors can be

ignored and then the rectangular inclusion can be considered as a fiber.
(4) For inclusions in an anisotropic material-matrix, the effect of inclusion on the generalized intensity factors is very

complicated and it needs to be discussed further.
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