496 research outputs found

    Model-based Comparative Prediction of Transcription-Factor Binding Motifs in Anabolic Responses in Bone.

    Get PDF
    Understanding the regulatory mechanism that controls the alteration of global gene expression patterns continues to be a challenging task in computational biology. We previously developed an ant algorithm, a biologically-inspired computational technique for microarray data, and predicted putative transcription-factor binding motifs (TFBMs) through mimicking interactive behaviors of natural ants. Here we extended the algorithm into a set of web-based software, Ant Modeler, and applied it to investigate the transcriptional mechanism underlying bone formation. Mechanical loading and administration of bone morphogenic proteins (BMPs) are two known treatments to strengthen bone. We addressed a question: Is there any TFBM that stimulates both “anabolic responses of mechanical loading” and “BMP-mediated osteogenic signaling”? Although there is no significant overlap among genes in the two responses, a comparative model-based analysis suggests that the two independent osteogenic processes employ common TFBMs, such as a stress responsive element and a motif for peroxisome proliferator-activated receptor (PPAR). The post-modeling in vitro analysis using mouse osteoblast cells supported involvements of the predicted TFBMs such as PPAR, Ikaros 3, and LMO2 in response to mechanical loading. Taken together, the results would be useful to derive a set of testable hypotheses and examine the role of specific regulators in complex transcriptional control of bone formation

    Late gestational lung hypoplasia in a mouse model of the Smith-Lemli-Opitz syndrome

    Get PDF
    BACKGROUND: Normal post-squalene cholesterol biosynthesis is important for mammalian embryonic development. Neonatal mice lacking functional dehydrocholesterol Δ7-reductase (Dhcr7), a model for the human disease of Smith-Lemli-Opitz syndrome, die within 24 hours of birth. Although they have a number of biochemical and structural abnormalities, one cause of death is from apparent respiratory failure due to developmental pulmonary abnormalities. RESULTS: In this study, we characterized further the role of cholesterol deficiency in lung development of these mice. Significant growth retardation, beginning at E14.5~E16.5, was observed in Dhcr7(-/- )embryos. Normal lobation but smaller lungs with a significant decrease in lung-to-body weight ratio was noted in Dhcr7(-/- )embryos, compared to controls. Lung branching morphogenesis was comparable between Dhcr7(-/- )and controls at early stages, but delayed saccular development was visible in all Dhcr7(-/- )embryos from E17.5 onwards. Impaired pre-alveolar development of varying severity, inhibited cell proliferation, delayed differentiation of type I alveolar epithelial cells (AECs) and delayed vascular development were all evident in knockout lungs. Differentiation of type II AECs was apparently normal as judged by surfactant protein (SP) mRNAs and SP-C immunostaining. A significant amount of cholesterol was detectable in knockout lungs, implicating some maternal transfer of cholesterol. No significant differences of the spatial-temporal localization of sonic hedgehog (Shh) or its downstream targets by immunohistochemistry were detected between knockout and wild-type lungs and Shh autoprocessing occurred normally in tissues from Dhcr7(-/- )embryos. CONCLUSION: Our data indicated that cholesterol deficiency caused by Dhcr7 null was associated with a distinct lung saccular hypoplasia, characterized by failure to terminally differentiate alveolar sacs, a delayed differentiation of type I AECs and an immature vascular network at late gestational stages. The molecular mechanism of impaired lung development associated with sterol deficiency by Dhcr7 loss is still unknown, but these results do not support the involvement of dysregulated Shh-Patched-Gli pathway in causing this defect

    Visual Servoing of Humanoid Dual-Arm Robot with Neural Learning Enhanced Skill Transferring Control

    Get PDF
    This paper presents a novel combination of visual servoing (VS) control and neural network (NN) learning on humanoid dual-arm robot. A VS control system is built by using stereo vision to obtain the 3D point cloud of a target object. A least square-based method is proposed to reduce the stochastic error in workspace calibration. An NN controller is designed to compensate for the effect of uncertainties in payload and other parameters (both internal and external) during the tracking control. In contrast to the conventional NN controller, a deterministic learning technique is utilized in this work, to enable the learned neural knowledge to be reused before current dynamics changes. A skill transfer mechanism is also developed to apply the neural learned knowledge from one arm to the other, to increase the neural learning efficiency. Tracked trajectory of object is used to provide target position to the coordinated dual arms of a Baxter robot in the experimental study. Robotic implementations has demonstrated the efficiency of the developed VS control system and has verified the effectiveness of the proposed NN controller with knowledge-reuse and skill transfer features

    Wideband Dual-Circular-Polarization Antenna with High Isolation for Millimeter-Wave Wireless Communications

    Get PDF
    10.13039/501100001809-National Natural Science Foundation of China (Grant Number: 61474112, 62001039, 62022022 and 91738102); 10.13039/501100004543-China Scholarship Council (Grant Number: 201609110157

    38766 Massively Parallel Reporter Assay Reveals Functional Impact of 3™-UTR SNPs Associated with Neurological and Psychiatric Disorders

    Get PDF
    ABSTRACT IMPACT: Screening the effect of thousands of non-coding genetic variants will help identify variants important in the etiology of diseases OBJECTIVES/GOALS: Massively parallel reporter assays (MPRAs) can experimentally evaluate the impact of genetic variants on gene expression. In this study, our objective was to systematically evaluate the functional activity of 3’-UTR SNPs associated with neurological disorders and use those results to help understand their contributions to disease etiology. METHODS/STUDY POPULATION: To choose variants to evaluate with the MPRA, we first gathered SNPs from the GWAS Catalog that were associated with any neurological disorder trait with p-value 0.8) and retrieved all the common 3’-UTR SNPs (allele-frequency > 0.05) within that region. We used an MPRA to measure the impact of these 3’-UTR variants in SH-SY5Y neuroblastoma cells and a microglial cell line. These results were then used to train a deep-learning model to predict the impact of variants and identify features that contribute to the predictions. RESULTS/ANTICIPATED RESULTS: Of the 13,515 3’-UTR SNPs tested, 400 and 657 significantly impacted gene expression in SH-SY5Y and microglia, respectively. Of the 84 SNPs significantly impacted in both cells, the direction of impact was the same in 81. The direction of eQTL in GTEx tissues agreed with the assay SNP effect in SH-SY5Y cells but not microglial cells. The deep-learning model predicted sequence activity level correlated with the experimental activity level (Spearman’s corr = 0.45). The deep-learning model identified several predictive motifs similar to motifs of RNA-binding proteins. DISCUSSION/SIGNIFICANCE OF FINDINGS: This study demonstrates that MPRAs can be used to evaluate the effect of non-coding variants, and the results can be used to train a machine learning model and interpret its predictions. Together, these can help identify causal variants and further understand the etiology of diseases

    Cost Effectiveness of a Pharmacy-Only Refill Program in a Large Urban HIV/AIDS Clinic in Uganda

    Get PDF
    HIV/AIDS clinics in Uganda and other low-income countries face increasing numbers of patients and workforce shortages. We performed a cost-effectiveness analysis comparing a Pharmacy-only Refill Program (PRP), a form of task-shifting, to the Standard of Care (SOC) at a large HIV/AIDS clinic in Uganda, the Infectious Diseases Institute (IDI). The PRP was started to reduce workforce shortages and optimize patient care by substituting pharmacy visits for SOC involving monthly physician visits for accessing antiretroviral medicines.We used a retrospective cohort analysis to compare the effectiveness of the PRP compared to SOC. Effectiveness was defined as Favorable Immune Response (FIR), measured as having a CD4 lymphocyte count of over 500 cells/µl at follow-up. We used multivariate logistic regression to assess the difference in FIR between patients in the PRP and SOC. We incorporated estimates of effectiveness into an incremental cost-effectiveness analysis performed from a limited societal perspective. We estimated costs from previous studies at IDI and conducted univariate and probabilistic sensitivity analyses. We identified 829 patients, 578 in the PRP and 251 in SOC. After 12.8 months (PRP) and 15.1 months (SOC) of follow-up, 18.9% of patients had a FIR, 18.6% in the PRP and 19.6% in SOC. There was a non-significant 9% decrease in the odds of having a FIR for PRP compared to SOC after adjusting for other variables (OR 0.93, 95% CI 0.55-1.58). The PRP was less costly than the SOC (US520vs.655annually,respectively).TheincrementalcosteffectivenessratiocomparingPRPtoSOCwasUS 520 vs. 655 annually, respectively). The incremental cost-effectiveness ratio comparing PRP to SOC was US 13,500 per FIR. PRP remained cost-effective at univariate and probabilistic sensitivity analysis.The PRP is more cost-effective than the standard of care. Similar task-shifting programs might help large HIV/AIDS clinics in Uganda and other low-income countries to cope with increasing numbers of patients seeking care

    Durvalumab in Combination with Olaparib in Patients with Relapsed SCLC: Results from a Phase II Study

    Get PDF
    Purpose: Despite high tumor mutationburden, immune checkpoint blockade has limited efficacy in SCLC. We hypothesized that poly (ADP-ribose) polymerase inhibition could render SCLC more susceptible to immune checkpoint blockade. Methods: A single-arm, phase II trial (NCT02484404) enrolled patients with relapsed SCLC who received durvalumab, 1500 mg every 4 weeks, and olaparib, 300 mg twice a day. The primary outcome was objective response rate. Correlative studies included mandatory collection of pretreatment and during-treatment biopsy specimens, which were assessed to define SCLC immunephenotypes: desert (CD8-positive T-cell prevalence low), excluded (CD8-positive T cells in stroma immediately adjacent/within tumor), and inflamed (CD8-positive T cells in direct contact with tumor). Results: A total of 20 patients were enrolled. Their median age was 64 years, and most patients (60%) had platinum-resistant/refractory disease. Of 19 evaluable patients, two were observed to have partial or complete responses (10.5%), including a patient with EGFR-transformed SCLC. Clinical benefit was observed in four patients (21.1% [95% confidence interval: 6.1%–45.6%]) with confirmed responses or prolonged stable disease (≥8 months). The most common treatment-related adverse events were anemia (80%), lymphopenia (60%), and leukopenia (50%). Nine of 14 tumors (64%) exhibited an excluded phenotype; 21% and 14% of tumors exhibited the inflamed and desert phenotypes, respectively. Tumor responses were observed in all instances in which pretreatment tumors showed an inflamed phenotype. Of the five tumors without an inflamed phenotype at baseline, no during-treatment increase in T-cell infiltration or programmed death ligand 1 expression on tumor-infiltrating immune cells was observed. Conclusions: The study combination did not meet the preset bar for efficacy. Pretreatment and during-treatment biopsy specimens suggested that tumor immune phenotypes may be relevant for SCLC responses to immune checkpoint blockade combinations. The predictive value of preexisting CD8-positive T-cell infiltrates observed in this study needs to be confirmed in larger cohorts

    Moduli Spaces of Cold Holographic Matter

    Full text link
    We use holography to study (3+1)-dimensional N=4 supersymmetric Yang-Mills theory with gauge group SU(Nc), in the large-Nc and large-coupling limits, coupled to a single massless (n+1)-dimensional hypermultiplet in the fundamental representation of SU(Nc), with n=3,2,1. In particular, we study zero-temperature states with a nonzero baryon number charge density, which we call holographic matter. We demonstrate that a moduli space of such states exists in these theories, specifically a Higgs branch parameterized by the expectation values of scalar operators bilinear in the hypermultiplet scalars. At a generic point on the Higgs branch, the R-symmetry and gauge group are spontaneously broken to subgroups. Our holographic calculation consists of introducing a single probe Dp-brane into AdS5 times S^5, with p=2n+1=7,5,3, introducing an electric flux of the Dp-brane worldvolume U(1) gauge field, and then obtaining explicit solutions for the worldvolume fields dual to the scalar operators that parameterize the Higgs branch. In all three cases, we can express these solutions as non-singular self-dual U(1) instantons in a four-dimensional space with a metric determined by the electric flux. We speculate on the possibility that the existence of Higgs branches may point the way to a counting of the microstates producing a nonzero entropy in holographic matter. Additionally, we speculate on the possible classification of zero-temperature, nonzero-density states described holographically by probe D-branes with worldvolume electric flux.Comment: 56 pages, 8 PDF images, 4 figure
    corecore