5,936 research outputs found

    Preparation of gas-tight strontium-doped lanthanum cobaltate by an aqueous sol-gel process

    Get PDF
    Gas-tight dense membranes of highly Sr-doped LaCoO3 (such as the composition La0.3Sr0.7CoO3 chosen in this study) are difficult to prepare using usual synthesis processes. This report presents an aqueous sol-gel route using metal acetates as precursors to achieve this goal. Hydrogen peroxide and ammonia are added to the acetates precursor solution to obtain stable sol and xerogel, as well as a homogeneous powder after heat treatment. Thermal analysis and XRD show the presence of SrCO3 and La2O3 when the heat treatment temperature of the xerogel is lower than 950 °C. Single phase of cubic perovskite La0.3Sr0.7CoO3 can be obtained after treatment at above 1000 °C. Sintering the cold pressed green compact at above 1100 °C may result in gas-tight samples. It is found that the sintering temperature has a minor influence on the oxygen permeability of a gas-tight membrane

    Oxygen permeation through oxygen ion oxide-noble metal dual phase composites

    Get PDF
    Oxygen permeation behaviour of three composites, yttria-stabilized zirconia-palladium, erbia-stabilized bismuth oxidenoble metal (silver, gold) was studied. Oxygen permeation measurements were performed under controlled oxygen pressure gradients at elevated temperatures. Air was supplied at one side of a dense sintered disk specimen, while helium was fed at the opposite side to sweep away the permeated oxygen. This research has demonstrated that in addition to the presence of percolative metal phase in the oxide matrix, a large ionic conductivity of the oxide phase and a high catalytic activity of the metal phase towards surface oxygen exchange are required for the dual phase composite to possess high oxygen permeability. The bismuth oxide-silver composite fulfils these requirements, hence showing the best oxygen permeability

    Indicators of hot fluid migration in sedimentary basins: evidence from the UK Atlantic Margin

    Get PDF
    Microthermometric, petrographic and isotopic methods have been used to detect evidence for hot fluid flow in Mesozoic and Tertiary sediments from the NW UK continental margin, West of Shetland. New data presented here show that temperatures are hotter by c. 40°C in Tertiary samples than in the underlying Jurassic and Cretaceous sediments in wells 204/28-1, 206/5-2, 208/27-1, especially in cements from samples as young as mid–upper Eocene in age. Paleocene samples can be discriminated from older (Jurassic and Cretaceous) and younger (Eocene) sandstones on the basis of silica cement morphology and cathodoluminescence zonation. Jurassic, Cretaceous and Eocene quartz cements show oscillatory zoning as a consequence of relatively slow burial cementation. In direct contrast, rapid precipitation of silica cements from the cooling of hot fluids has produced unzoned cements in all but one Paleocene sample. No evidence for unzoned quartz cements was noted in any pre-Paleocene or Eocene samples. The restriction of hot fluid inclusions and unzoned cements to the Paleocene and post-Paleocene is consistent with lateral focusing of hot fluids. Isotopic data from kaolinites indicate that these fluids are best represented by mixtures of Mesozoic or Tertiary meteoric waters and marine porewaters that have undergone isotopic alteration through interaction with volcanic material. Our results indicate that hot fluid flow occurred over a relatively long time-scale (i.e. several million years), which may have important consequences for the degradation of reservoired hydrocarbons in West of Shetland Paleocene plays

    Microstructural development, electrical properties and oxygen permeation of zirconia-palladium composites

    Get PDF
    Yttria-stabilized cubic zirconia (YSZ)-palladium dual phase composites have been investigated. The percolative composite containing 40 vol% Pd (ZYPd40) showed a much larger oxygen permeability than that of the non-percolative composite containing 30 vol% Pd (ZYPd30). For a 2.0 mm thick percolative composite, an oxygen flux of 4.3 × 10−8 mol/cm2/s was measured at 1100 °C with oxygen partial pressures at the feed and permeate sides being 0.209 and 0.014 atm, respectively. This value is two orders of magnitude larger than that observed for a 2.0 mm thick non-percolative composite at the same temperature with the oxygen partial pressures at the feed and permeate sides being 0.209 and 1.5 × 10−4 atm, respectively. From the dependence of the oxygen permeation on the temperature and on the oxygen partial pressures, it was concluded that the transport of the oxygen ions through the YSZ phase in the percolative system was the rate limiting step

    Increasing eigenstructure assignment design degree of freedom using lifting

    Get PDF
    This paper presents the exposition of an output-lifting eigenstructure assignment (EA) design framework, wherein the available EA design degrees of freedom (DoF) is significantly increased, and the desired eigenstructure of a single-rate full state feedback solution can be achieved within an output feedback system. A structural mapping is introduced to release the output-lifting causality constraint. Additionally, the available design DoF can be further enlarged via involving the input-lifting into the output-lifting EA framework. The newly induced design DoF can be utilised to calculate a structurally constrained, causal gain matrix which will maintain the same assignment capability. In this paper, the robustification of the output-lifting EA is also proposed, which allows a trade-off between performance and robustness in the presence of structured model uncertainties to be established. A lateral flight control benchmark in the EA literature and a numerical example are used to demonstrate the effectiveness of the design framework

    High-Tc ramp-type Josephson junctions on MgO substrates for Terahertz applications

    Get PDF
    The authors successfully fabricated high-Tc ramp-type junctions with PrBa2Cu3-xGaxO7-δ (PBCGO: x=0.1, 0.4) barriers on MgO substrates. The junctions showed resistively shunted Josephson junction (RSJ)-like I-V curves with thermally and voltage activated conductivity. The IcRn products for these junctions scaled very well with the Ga-doping. Maximum response of the junctions for 100-GHz millimeter-wave irradiation could be observed up to 12 mV corresponding to 6 THz. Using far infrared laser radiation, we confirmed a terahertz (THz) response of these junctions. These results show promise for THz-wave applications of ramp-type Josephson junctions

    Fermionic superfluidity: From high Tc superconductors to ultracold Fermi gases

    Full text link
    We present a pairing fluctuation theory which self-consistently incorporates finite momentum pair excitations in the context of BCS--Bose-Einstein condensation (BEC) crossover, and we apply this theory to high TcT_c superconductors and ultracold Fermi gases. There are strong similarities between Fermi gases in the unitary regime and high Tc superconductors. Here we address key issues of common interest, especially the pseudogap. In the Fermi gases we summarize recent experiments including various phase diagrams (with and without population imbalance), as well as evidence for a pseudogap in thermodynamic and other experiments.Comment: Expanded version, invited talk at the 5th International Conference on Complex Matter -- Stripes 2006, 6 pages, 6 figure

    Generation of defects and disorder from deeply quenching a liquid to form a solid

    Full text link
    We show how deeply quenching a liquid to temperatures where it is linearly unstable and the crystal is the equilibrium phase often produces crystalline structures with defects and disorder. As the solid phase advances into the liquid phase, the modulations in the density distribution created behind the advancing solidification front do not necessarily have a wavelength that is the same as the equilibrium crystal lattice spacing. This is because in a deep enough quench the front propagation is governed by linear processes, but the crystal lattice spacing is determined by nonlinear terms. The wavelength mismatch can result in significant disorder behind the front that may or may not persist in the latter stage dynamics. We support these observations by presenting results from dynamical density functional theory calculations for simple one- and two-component two-dimensional systems of soft core particles.Comment: 25 pages, 11 figure

    Ionic conductivity of perovskite LaCoO3 measured by oxygen permeation technique

    Get PDF
    Oxygen permeation measurement is demonstrated, not only for a mixed oxide ionic and electronic conductor, but also as a new alternative to determine ambipolar conductivities, which can be usually reduced to be partial conductivities (either ionic or electronic). As a model system and an end member of an important oxygen permeable La1-xSrxCoO3- dense membrane system, LaCoO3 dense ceramic was measured with respect to the thickness, temperature and oxygen partial pressure dependencies of its oxygen permeability. Within the thickness range used (down to 0.041cm), the oxygen permeation of LaCoO3 was found to be purely controlled by bulk diffusion with activation energies between 260–300kJmol-1. Its ionic conductivity and oxygen self-diffusion coefficient as functions of oxygen partial pressure were also derived from permeability data. PO2-0.46 and PO2-0.31 relations were found in the high pressure (1.01–10-2bar) and low pressure (10-2.8–10-3.4bar) ranges, respectively.\u

    Fast and Accurate Coarsening Simulation with an Unconditionally Stable Time Step

    Full text link
    We present Cahn-Hilliard and Allen-Cahn numerical integration algorithms that are unconditionally stable and so provide significantly faster accuracy-controlled simulation. Our stability analysis is based on Eyre's theorem and unconditional von Neumann stability analysis, both of which we present. Numerical tests confirm the accuracy of the von Neumann approach, which is straightforward and should be widely applicable in phase-field modeling. We show that accuracy can be controlled with an unbounded time step Delta-t that grows with time t as Delta-t ~ t^alpha. We develop a classification scheme for the step exponent alpha and demonstrate that a class of simple linear algorithms gives alpha=1/3. For this class the speed up relative to a fixed time step grows with the linear size of the system as N/log N, and we estimate conservatively that an 8192^2 lattice can be integrated 300 times faster than with the Euler method.Comment: 14 pages, 6 figure
    corecore