769 research outputs found

    Efficient cytosolic delivery of molecular beacon conjugates and flow cytometric analysis of target RNA

    Get PDF
    Fluorescent microscopy experiments show that when 2′-O-methyl-modified molecular beacons (MBs) are introduced into NIH/3T3 cells, they elicit a nonspecific signal in the nucleus. This false-positive signal can be avoided by conjugating MBs to macromolecules (e.g. NeutrAvidin) that prevent nuclear sequestration, but the presence of a macromolecule makes efficient cytosolic delivery of these probes challenging. In this study, we explored various methods including TAT peptide, Streptolysin O and microporation for delivering NeutrAvidin-conjugates into the cytosol of living cells. Surprisingly, all of these strategies led to entrapment of the conjugates within lysosomes within 24 h. When the conjugates were pegylated, to help prevent intracellular recognition, only microporation led to a uniform cytosolic distribution. Microporation also yielded a transfection efficiency of 93% and an average viability of 86%. When cells microporated with MB–NeutrAvidin conjugates were examined via flow cytometry, the signal-to-background was found to be more than 3 times higher and the sensitivity nearly five times higher than unconjugated MBs. Overall, the present study introduces an improved methodology for the high-throughput detection of RNA at the single cell level

    Radiometric Bimolecular Beacons for Sensitive Detection of RNA in Single Living Cells

    Get PDF
    Numerous studies have utilized molecular beacons (MBs) to image RNA expression in living cells; however, there is growing evidence that the sensitivity of RNA detection is significantly hampered by their propensity to emit false-positive signals. To overcome these limitations, we have developed a new RNA imaging probe called ratiometric bimolecular beacon (RBMB), which combines functional elements of both conventional MBs and siRNA. Analogous to MBs, RBMBs elicit a fluorescent reporter signal upon hybridization to complementary RNA. In addition, an siRNA-like doublestranded domain is used to facilitate nuclear export. Accordingly, live-cell fluorescent imaging showed that RBMBs are localized predominantly in the cytoplasm, whereas MBs are sequestered into the nucleus. The retention of RBMBs within the cytoplasmic compartment led to \u3e15-fold reduction in false-positive signals and a significantly higher signal-to-background compared with MBs. The RBMBs were also designed to possess an optically distinct reference fluorophore that remains unquenched regardless of probe confirmation. This reference dye not only provided a means to track RBMB localization, but also allowed single cell measurements of RBMB fluorescence to be corrected for variations in probe delivery. Combined, these attributes enabled RBMBs to exhibit an improved sensitivity for RNA detection in living cells

    Superparamagnetic Iron Oxide Nanoparticle Probes for Molecular Imaging

    Get PDF
    The field of molecular imaging has recently seen rapid advances in the development of novel contrast agents and the implementation of insightful approaches to monitor biological processes non-invasively. In particular, superparamagnetic iron oxide nanoparticles (SPIO) have demonstrated their utility as an important tool for enhancing magnetic resonance contrast, allowing researchers to monitor not only anatomical changes, but physiological and molecular changes as well. Applications have ranged from detecting inflammatory diseases via the accumulation of non-targeted SPIO in infiltrating macrophages to the specific identification of cell surface markers expressed on tumors. In this article, we attempt to illustrate the broad utility of SPIO in molecular imaging, including some of the recent developments, such as the transformation of SPIO into an activatable probe termed the magnetic relaxation switch

    Optimisation of the Schizosaccharomyces pombe urg1 expression system

    Get PDF
    The ability to study protein function in vivo often relies on systems that regulate the presence and absence of the protein of interest. Two limitations for previously described transcriptional control systems that are used to regulate protein expression in fission yeast are: the time taken for inducing conditions to initiate transcription and the ability to achieve very low basal transcription in the "OFF-state". In previous work, we described a Cre recombination-mediated system that allows the rapid and efficient regulation of any gene of interest by the urg1 promoter, which has a dynamic range of approximately 75-fold and which is induced within 30-60 minutes of uracil addition. In this report we describe easy-to-use and versatile modules that can be exploited to significantly tune down P urg1 "OFF-levels" while maintaining an equivalent dynamic range. We also provide plasmids and tools for combining P urg1 transcriptional control with the auxin degron tag to help maintain a null-like phenotype. We demonstrate the utility of this system by improved regulation of HO-dependent site-specific DSB formation, by the regulation Rtf1-dependent replication fork arrest and by controlling Rhp18(Rad18)-dependent post replication repair

    Sub-cellular trafficking and functionality of 2′-O-methyl and 2′-O-methyl-phosphorothioate molecular beacons

    Get PDF
    Molecular beacons (MBs) have shown great potential for the imaging of RNAs within single living cells; however, the ability to perform accurate measurements of RNA expression can be hampered by false-positives resulting from nonspecific interactions and/or nuclease degradation. These false-positives could potentially be avoided by introducing chemically modified oligonucleotides into the MB design. In this study, fluorescence microscopy experiments were performed to elucidate the subcellular trafficking, false-positive signal generation, and functionality of 2′-O-methyl (2Me) and 2′-O-methyl-phosphorothioate (2MePS) MBs. The 2Me MBs exhibited rapid nuclear sequestration and a gradual increase in fluorescence over time, with nearly 50% of the MBs being opened nonspecifically within 24 h. In contrast, the 2MePS MBs elicited an instantaneous increase in false-positives, corresponding to ∼5–10% of the MBs being open, but little increase was observed over the next 24 h. Moreover, trafficking to the nucleus was slower. After 24 h, both MBs were localized in the nucleus and lysosomal compartments, but only the 2MePS MBs were still functional. When the MBs were retained in the cytoplasm, via conjugation to NeutrAvidin, a significant reduction in false-positives and improvement in functionality was observed. Overall, these results have significant implications for the design and applications of MBs for intracellular RNA measurement

    The CDKN2A G500 Allele Is More Frequent in GBM Patients with No Defined Telomere Maintenance Mechanism Tumors and Is Associated with Poorer Survival

    Get PDF
    Prognostic markers for glioblastoma multiforme (GBM) are important for patient management. Recent advances have identified prognostic markers for GBMs that use telomerase or the alternative lengthening of telomeres (ALT) mechanism for telomere maintenance. Approximately 40% of GBMs have no defined telomere maintenance mechanism (NDTMM), with a mixed survival for affected individuals. This study examined genetic variants in the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene that encodes the p16INK4a and p14ARF tumor suppressors, and the isocitrate dehydrogenase 1 (IDH1) gene as potential markers of survival for 40 individuals with NDTMM GBMs (telomerase negative and ALT negative by standard assays), 50 individuals with telomerase, and 17 individuals with ALT positive tumors. The analysis of CDKN2A showed NDTMM GBMs had an increased minor allele frequency for the C500G (rs11515) polymorphism compared to those with telomerase and ALT positive GBMs (p = 0.002). Patients with the G500 allele had reduced survival that was independent of age, extent of surgery, and treatment. In the NDTMM group G500 allele carriers had increased loss of CDKN2A gene dosage compared to C500 homozygotes. An analysis of IDH1 mutations showed the R132H mutation was associated with ALT positive tumors, and was largely absent in NDTMM and telomerase positive tumors. In the ALT positive tumors cohort, IDH1 mutations were associated with a younger age for the affected individual. In conclusion, the G500 CDKN2A allele was associated with NDTMM GBMs from older individuals with poorer survival. Mutations in IDH1 were not associated with NDTMM GBMs, and instead were a marker for ALT positive tumors in younger individuals

    Virtual Machine Support for Many-Core Architectures: Decoupling Abstract from Concrete Concurrency Models

    Get PDF
    The upcoming many-core architectures require software developers to exploit concurrency to utilize available computational power. Today's high-level language virtual machines (VMs), which are a cornerstone of software development, do not provide sufficient abstraction for concurrency concepts. We analyze concrete and abstract concurrency models and identify the challenges they impose for VMs. To provide sufficient concurrency support in VMs, we propose to integrate concurrency operations into VM instruction sets. Since there will always be VMs optimized for special purposes, our goal is to develop a methodology to design instruction sets with concurrency support. Therefore, we also propose a list of trade-offs that have to be investigated to advise the design of such instruction sets. As a first experiment, we implemented one instruction set extension for shared memory and one for non-shared memory concurrency. From our experimental results, we derived a list of requirements for a full-grown experimental environment for further research

    Ultraviolet Laser Action in Ferromagnetic Zn1−xFexO Nanoneedles

    Get PDF
    Fe-doped ZnO nanoneedles (NDs) were fabricated by an Ar+ ion sputtering technique operated at room temperature. The as-grown samples show both ferromagnetic and lasing properties. The saturated magnetization moment was measured from 0.307 to 0.659 emu cm−3 at the field of 10 kOe with various Fe concentrations. Intense ultraviolet random lasing emission was observed from Zn1 − xFexO NDs at room temperature. The X-ray photoelectron spectroscopy result reveals that the doped Fe atoms occupy the Zn sites and lead to a decrease in oxygen deficiency
    corecore