7 research outputs found

    First detection of Paenibacillus larvae the causative agent of American Foulbrood in a Ugandan honeybee colony

    Get PDF
    Paenibacillus larvae is a highly contagious and often lethal widely distributed pathogen of honeybees, Apis mellifera but has not been reported in eastern Africa to date. We investigated the presence of P. larvae in the eastern and western highland agro-ecological zones of Uganda by collecting brood and honey samples from 67 honeybee colonies in two sampling occasions and cultivated them for P. larvae. Also, 8 honeys imported and locally retailed in Uganda were sampled and cultivated for P. larvae. Our aim was to establish the presence and distribution of P. larvae in honeybee populations in the two highland agro-ecological zones of Uganda and to determine if honeys that were locally retailed contained this lethal pathogen. One honeybee colony without clinical symptoms for P. larvae in an apiary located in a protected area of the western highlands of Uganda was found positive for P. larvae. The strain of this P. larvae was genotyped and found to be ERIC I. In order to compare its virulence with P. larvae reference strains, in vitro infection experiments were conducted with carniolan honeybee larvae from the research laboratory at Ghent University, Belgium. The results show that the virulence of the P. larvae strain found in Uganda was at least equally high. The epidemiological implication of the presence of P. larvae in a protected area is discussed

    The first detection of Braula coeca in honey bee colonies in Uganda

    No full text
    Although Braula coeca does not parasitize honey bees, it causes economic impact when its larval stage burrows under the capping of honey combs. We sampled 175 and 195 honey bee colonies between December 2014-September 2015 during the dry and wet seasons respectively from two highland agro-ecological zones of Uganda with the aim of establishing B. coeca presence, infestation levels and its knowledge by beekeepers. The results confirmed the presence of B. coeca with infestation levels being high during the dry season compared to the wet season. Infestation levels of the B. coeca were generally lower than those reported in other countries suggesting that local honey bees have mechanisms that maintain low pest levels. Finally, majority of the beekeepers were not aware of this pest and were not carrying out any targeted control measures against B. coeca or Varroa destructor

    The first detection of Braula coeca

    No full text

    Factors influencing the prevalence and infestation levels of Varroa destructor in honeybee colonies in two highland agro-ecological zones of Uganda

    No full text
    Varroa mites are ecto-parasites of honeybees and are a threat to the beekeeping industry. We identified the haplotype of Varroa mites and evaluated potential factors that influence their prevalence and infestation levels in the eastern and western highland agro-ecological zones of Uganda. This was done by collecting samples of adult worker bees between December 2014 and September 2015 in two sampling moments. Samples of bees were screened for Varroa using the ethanol wash method and the mites were identified by molecular techniques. All DNA sequences obtained from sampled mite populations in the two zones were 100 % identical to the Korean Haplotype (AF106899). Mean mite prevalence in the apiaries was 40 and 53 % for the western and eastern zones, respectively, during the first sampling. Over the second sampling, mean mite prevalence increased considerably in the western (59 %) but not in the eastern (51 %) zone. Factors that were associated with Varroa mite infestation levels include altitude, nature of apiary slope and apiary management practices during the first sampling. Our results further showed that Varroa mites were spreading from lower to higher elevations. Feral colonies were also infested with Varroa mites at infestation levels not significantly different from those in managed colonies. Colony productivity and strength were not correlated to mite infestation levels. We recommend a long-term Varroa mite monitoring strategy in areas of varying landscape and land use factors for a clear understanding of possible changes in mite infestation levels among African honeybees for informed decision making
    corecore