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Summary 

 

In Uganda, the honeybee, Apis mellifera is kept mainly for honey, other beehive products and for 

the provision of vital pollination services. Although the beekeeping sector is growing and 

providing a source of income, food and medicine to many rural households, the potential threat 

from honeybee parasites and pathogens poses challenges to the sector. Indeed, some of the 

parasites like Varroa mites which have devastated the beekeeping industry in Europe, Asia and 

North America have already been registered in Uganda. Although, such parasites and their 

impacts on European honeybee races are fairly known; their distribution, infestation levels and 

impacts on African honeybee races are poorly understood. In order to contribute to bridge this 

information gap, apiaries and feral colonies in the eastern and western highland agro-ecological 

zones of Uganda each with an altitudinal gradient and varying land uses were sampled during the 

dry and wet seasons between December 2014 and September 2015. The samples were screened 

for 11 common RNA viruses, Paenibacillus larvae, Mellisococcus plutonius, Ascosphaera apis, 

Nosema spp. and Varroa mites using standard techniques with the aim of establishing their 

infestation levels and their effects on colony performance in the two highland agro-ecological 

zones of Uganda. Five RNA viruses, P. larvae, three Nosema spp. and Varroa mites were detected. 

The infection rates of viruses varied: Deformed wing virus (51.9%), Black queen cell virus (20%), 

Acute bee paralysis virus (9.5%), Lake Sinai virus (2.5%) and Sacbrood virus (2.5%) in sampled 

colonies. Furthermore, one asymptomatic colony in a protected area of the western highlands 

was found positive for P. larvae ERIC I strain whose virulence was at least equally high as the 

reference strain on carniolan bees. A new microsporidian that is smaller than the known 

honeybee microsporidian parasites; Nosema ceranae and Nosema apis was detected in Ugandan 

honeybees. The new microsporidian has fewer polar filament coils (10 - 12), compared to 20 - 23 

for N. ceranae and more than 30 often seen in N. apis. This new microsporidian was found at 

higher infestation rates compared to the other two known microsporidian parasites of 

honeybees. Varroa mite infestation levels in the eastern zone was significantly higher than that 

in the western during the dry season (P = 0.02). Varroa mites were spreading from lower to higher 



elevations. Feral colonies were also infested with parasites and pathogens similar to those in 

managed colonies. Landscape factors like altitude and land use influenced honeybee 

parasite/pathogen distribution and infestation levels. Increase in viral diversity in Ugandan 

honeybee colonies and high Nosema spore loads reduced colony performance while Varroa mite 

infestation alone did not affect colony strength and productivity. The detection of these 

pathogens and parasites highlight the need for vigilance and development of a national honeybee 

health strategy to manage them in the country. Detailed studies on the new Nosema species and 

generally African honeybee health should be carried out in order to: 1) understand distribution, 

transmission, development, 2) identify associated effects on honeybees at individual and colony 

levels and 3) to reach a better understanding of the poorly known African honeybee pathogen 

complex especially in terms of the identities of pathogens present and survival mechanisms. 
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Samenvatting 

 

In Uganda wordt de honingbij,  Apis mellifera, hoofdzakelijk gezien als leverancier van 

verschillende natuurproducten zoals honing, bijenwas, konginnengelei en propolis, maar ze 

speelt tevens een belangrijke rol in de bestuiving van verschillende bloemen en planten. Hoewel 

de bijenteeltsector groeit en het een  inkomstenbron, voeding en medicijnen verschaft aan vele 

gezinnen vormt de potentiële dreiging van parasieten en pathogenen een uitdaging voor de 

sector. Recent werd één van de belangrijkste parasieten, de varroamijt, in Uganda vastgesteld. 

Deze laatste wordt verantwoordelijk geacht voor de grote verliezen in de bijenteelt in Europa, 

Azië en Noord-Amerika. Hoewel,  de gevolgen van deze parasiet op de Europese honingbij  goed 

bestudeerd zijn, zijn de distributie, besmetting en hun effecten op de Afrikaanse honingbij weinig 

of niet onderzocht. In deze scriptie werden bijen bemonsterd van zowel beheerde  als van wilde 

kolonies in twee agro-ecologische zones van Uganda elk met een hoogte gradiënt en wisselende 

landgebruik om deze problematiek verder uit te spitten. De bijen werden verzameld tijdens het 

droge en het natte seizoen tussen december 2014 en september 2015. De monsters werden  

onderzocht naar de aanwezigheid van 11 RNA-virussen, Paenibacillus larvae, Mellisococcus 

plutonius, Ascosphaera apis, Nosema spp. en de varroamijt met behulp van standaard technieken 

met als doel de prevalentie, besmettingsgraad en hun effecten op de kolonieprestaties te 

bestuderen. Vijf RNA virussen, P. larvae, drie Nosema spp. en de varroamijt werden 

gedetecteerd. De prevalentie van virussen in de onderzochte kolonies zijn: Deformed wing virus 

(51,9%), Black queen cel virus (20%), Acute bee paralysis virus (9,5%), Lake Sinai virus (2,5 %) en 

Sacbrood virus (2,5%). Bovendien werd een asymptomatische kolonie in een beschermd gebied 

van de westelijke hooglanden positief bevonden voor een P. larvae ERIC I stam. Zijn virulentie is 

te vergelijken met de referentiestam op carnioolse bijen. Een nieuwe parasiet behorende tot de 

microsporida familie werd  geïdentificeerd. Deze nieuwe Nosema species is kleiner dan de veel 

voorkomende Nosema ceranae en Nosema apis en heeft minder polaire filament windingen (10 

- 12) in vergelijking met N. cerenae en N. apis die respectievelijk 20 tot 23 en soms meer dan 30 

windingen bezitten. Dit nieuw species werd met hogere prevalenties in de Ugandese 



bijenpopulatie teruggevonden in vergelijking met de twee gekende species. In de Oostelijke zone 

was de graad van varroamijt besmetting significant hoger dan die in de Westelijke zone althans  

tijdens het droge seizoen (P = 0,02). Varroamijten verspreiden zich van lager naar hoger gelegen 

gebieden. Wilde en beheerde bijenkolonies waren vergelijkbaar besmet met parasieten en 

ziekteverwekkers. Omgevingsfactoren zoals hoogte en landgebruik beïnvloedden zowel de 

distributie als de infestatieniveas van de verschillende parasieten en pathogenen. De 

aanwezigheid van meerdere virusbesmettingen en hoge Nosema sporenlasten in de Ugandese 

bijenvolken verminderde de kolonieprestaties, terwijl het niveau van de Varroamijtbesmetting 

op zich geen invloed had op de koloniesterkte noch op de productiviteit. De detectie van deze 

pathogenen en parasieten onderstrepen de noodzaak tot waakzaamheid en de ontwikkeling van 

een nationaal programma die de gezondheid van de honingbij bewaakt. Meer doorgedreven 

onderzoek naar de nieuwe Nosema soorten en over het algemeen naar de gezondheid van de 

Afrikaanse  honingbijen moet worden uitgevoerd om 1) hun verspreiding, overdracht en 

ontwikkeling te begrijpen 2) de bijbehorende effecten op individuele bijen en op kolonieniveau 

te identificeren en 3) om meer inzicht te krijgen in de totnogtoe slecht gekarakteriseerde 

Afrikaanse pathosfeer en naar de overlevingsmechanismen van de Afrikaanse honingbij. 
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CHAPTER 1 
 

General introduction 

 



Chapter 1 

1.1 Beekeeping: a source of sustainable livelihood  

The beekeeping industry is an important source of food and employment for many rural 

households in developing countries (Bradbear, 2009). Beekeeping is also important in rural 

poverty alleviation, environmental conservation and diversification of national export bases; King 

et al., 2011). Compared to other agricultural enterprises such as aquaculture, poultry and cattle 

farming, beekeeping is a relatively low-cost and low labor intensive enterprise that does not 

require a lot of land (Jacobs et al., 2006). This makes it viable for the people (e.g. women and 

youths) who are least likely to access production factors (Adjare, 1990; UEPB, 2005). In Uganda, 

women are actively involved in beekeeping and processing of beehive products: honey, beeswax 

(e.g. making candles), while the youth are involved in making beekeeping equipment and vending 

honey. Honey, pollen and bee brood are sources of carbohydrate and protein that rural people 

can obtain at minimal costs (UEPB, 2005). National and international pharmaceutical and 

cosmetic industries use bee products such as honey, propolis, royal jelly, bee venom and 

beeswax.  

 

The most important service that honeybees give to mankind is pollination (e.g. Kevan & Phillips, 

2001; Dietemann et al., 2009; Vaudo et al., 2012). Most crops (> 60% of the 1330 cultivated crop 

species) depend on pollination by bees (Zych & Jakubiec, 2006; Jacobs et al., 2006; Klein et al., 

2007), indicating the vital role of these insects in our food security. In Uganda, the role of 

honeybees in pollination is gradually being appreciated. As such, honeybees are currently used 

for pollination of coffee, cotton, pulses, oil seeds, mangoes, oranges, peas, beans and spices 

(Munyuli, 2013).  

 

Markets for Uganda’s beehive products are continuing to grow both locally and internationally. 

For instance, the European Union (EU) licensed Uganda to export honey to its market in 2005, 

creating immense opportunities for the beekeepers and those involved in the honey export value 

chain (UEPB, 2005). As a result, the beekeeping sector in Uganda is growing and has the potential 

to provide more employment opportunities to several people. However, honeybees’ 

susceptibility to environmental factors including attacks by numerous parasites and pathogens 
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like Varroa mites, viruses, bacteria and fungi pose significant threats not only to the health of 

honeybees and honeybee services, but to the production of beehive products. Therefore, there 

is need to maintain large and healthy populations of honeybees in Uganda for sustainable 

production and supply of honey, other beehive products and bee pollinated crops both to the 

local and international markets. 

 
1.2 Honeybees 

Currently, nine honeybee species in the genus Apis are recognized (Apis florae Fabricius, 1787; 

Apis andreniformis Smith, 1858; Apis dorsata Fabricius, 1793; Apis cerana Fabricius, 1793; Apis 

mellifera Linnaeus, 1758; Apis laboriosa; Apis nuluensis; Apis koschevnikovi and Apis nigrocinta) 

(Suwannapong et al., 2011). Of the nine species, A. mellifera is the most important to the 

beekeeping sector. A. mellifera is endemic to Africa but has been introduced throughout the 

world (Gençer et al., 2004; Nedic et al., 2009). It has successfully adapted to the varied conditions 

across the globe resulting in over 25 races (Ruttner, 1988 and Sheppard et al., 1997).  

 

In Africa, at least ten races of A. mellifera have been described (Franck et al., 2001; Figure 1.1). 

These include: A.m. intermissa; a North African honeybee race found north of the Sahara from 

Libya to Morocco (Chahbar et al., 2013). It is a very aggressive bee that swarms frequently. During 

droughts, over 80% of colonies may die but due to intensive swarming, colony numbers increase 

when conditions improve. Within a colony, A.m. intermissa rear numerous queens producing 

several queen cells. Another African honeybee race is A.m. lamarckii also called Egyptian bee 

which is found in North Eastern Africa primarily in Egypt and the Sudan along the Nile valley 

(Garnery et al., 2001). A.m. lamarckii has a reproduction strategy similar to A.m. intermissa in 

that they rear numerous queens with one colony recorded as rearing 368 queen cells and 

producing one small swarm with 30 queens. Another African honeybee race is A.m. scutellata, 

which is found in the savannahs of central and equatorial East Africa and most of South Africa 

(Franck et al., 2001). A.m. scutellata is small with a short tongue but highly aggressive and swarms 

frequently. They nest in a broad range of sites from cavities to open nests. In addition, A.m. 

adansoni is another African honeybee race found in West and East Africa and is yellow in colour 
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(Ruttner, 1982). They appear to be very similar to scutellata in their behaviours. Furthermore, 

A.m. monticola the mountain bee found at high altitudes (1500 - 3100 meters above sea level) in 

Kenya, Tanzania and Ethiopia is another African honeybee race (Prof. Frans Jacobs, personal 

communication). These bees are a dark and gentle race with longer hairs than other African races 

of bees. Another African honeybee race, A.m. capensis is found in South Africa and has a unique 

reproductive behaviour. Females other than the queen of A.m. capensis lay eggs which hatch into 

worker bees. Other races include: A.m. jemenitica in the northwest and eastern arid and semi-

arid lowlands of Ethiopia (Al-Ghamdi et al., 2013), A.m. bandasii in the central moist highlands of 

Ethiopia and A.m. woyi-gambell in south western semi-arid to sub-humid lowland parts of 

Ethiopia (Amssalu et al., 2004). Although three races of honeybees (A.m. scutellata, A.m. 

adansoni, A.m. monticola) were believed to be present in Uganda, only two (A.m. scutellata, and 

A.m. adansoni) have been confirmed (Kasangaki, 2016). 

 

Figure 1.1: Distribution of honeybee races in Africa according to Ruttner (1988). 
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1.3 Honeybee colony performance 

The performance of honeybee colonies which includes their strength and productivity is an 

important factor in beekeeping. Colony strength is a critical factor for maximizing honey 

production in A. mellifera (Neupane et al., 2012) and is correlated to the honey yields (Jevtić et 

al., 2009). The strength of a honeybee colony is important in selecting colonies for pollination 

(Delaney and Tarpy, 2008; Abou-Shaara, 2014). The strength of a honeybee colony can be 

estimated by considering the number of adult worker bees in the hive, the brood pattern and the 

flight activities (Pokhrel et al., 2006; Vaudo et al., 2011; Ali, 2011; Delaplane et al., 2013). A new 

method of measuring colony strength has been developed which uses computer assisted digital 

image analysis (Delaplane et al., 2013). Colony productivity on the other hand is measured in 

terms of honey produced and pollen collected (Ali, 2011). The strength and productivity of 

honeybee colonies is influenced by factors including queen egg-laying capacity, availability of 

empty combs, climatic conditions and supply of both pollen and nectar (Ali, 2007). A good 

vegetation cover provides ample supply of forage for honeybees and drives brood production 

and increase of honey reserves (Amssalu, 2002). At higher altitudes, the temperature is cooler 

and this makes honeybees spend much of their time warming the brood and the hive hence 

limiting foraging activities (Hemp, 2005). Honeybee colony strength and productivity can be 

improved through proper bee management practices including; hive inspection, pest control and 

provision of water (Kumsa and Takele, 2014).  

 

In Uganda, the honeybees (A. mellifera) are mostly kept for their products such as honey, 

propolis, beeswax and more recently honeybee venom. However, the role of honeybees in 

pollination is gradually being understood and appreciated. Therefore, honeybees are currently 

used by some farmers for pollination of fruits and vegetables in Uganda (Munyuli, 2013). As the 

beekeeping sector in Uganda develops, it is important to understand the performance of 

honeybee colonies and how this might be affected by factors that influence honeybee health for 

informed planning. 
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1.4 Factors influencing honeybee health 

Honeybee health is potentially influenced by factors that include; honeybee nutrition, 

environmental temperatures, pesticides, parasites and pathogens. Honeybees require 

carbohydrates, amino acids, lipids, vitamins, minerals and water for their survival and 

reproduction (Di Pasquale et al., 2013). These food nutrients originate from different sources; 

carbohydrates are obtained mainly from nectar or honey while amino acids, lipids, vitamins and 

minerals are acquired mainly from pollen. These nutrients must be present in the right 

proportions to ensure honeybee survival and reproduction. Any deficiencies or excess of some 

nutrients may result in increased parasite infestation and or impact on honeybee health. For 

instance, protein supplementation in honeybee colonies causes increased Nosema parasite 

infections (Mendoza et al., 2012). Also, nutritional deficiencies provide conducive conditions for 

multiplication of Nosema spores (Invernizzi et al., 2011) which impact the honeybee health.  

 

Similarly, weather conditions can impact on honeybee health and have been suspected to cause 

honeybee colony losses. A study in the United States showed that regions with relatively lower 

average temperatures had higher colony losses (VanEngelsdorp et al., 2008). However, direct 

impacts of temperature on honeybee survival are expected to be insignificant in Uganda where 

average annual temperature is about 26oC.  

 

Pesticides applied to agricultural crops and in beehives to control honeybee parasites have been 

suggested to compromise the immune systems of honeybees (Quarles, 2011) leading to 

increased pathogen infestation levels (Pettis et al., 2012; Dively et al., 2015). This can be 

attributed to some pesticides significantly affecting the expression of genes involved in several 

core physiological pathways in honeybee workers (Schmehl et al., 2014). However, pesticide use 

in most Ugandan farms is still low and might not currently be of great concern. Moreover, 

beekeepers in Uganda to date are not using pesticides to control Varroa mites. 

 

Parasites and pathogens such as Varroa mites, viruses and fungal pathogens have been shown 

to contribute to colony losses in North America and Europe (VanEngelsdorp et al., 2008; 
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Neumann & Carreck, 2010). Infestation by honeybee parasites and pathogens and their 

synergistic interactions with other suspected drivers of colony losses are therefore a major threat 

to the apiculture sector worldwide.  

 

Honeybee colonies in Uganda are potentially threatened by honeybee parasites and pathogens 

like Varroa mites (Kasangaki et al., 2016; Chemurot et al., 2016) and viruses such as the Black 

queen cell virus (BQCV) (Kajobe et al., 2009; 2011) that have been confirmed in the country. 

These parasites and pathogens may impact on honeybee health which will directly affect food 

security if not managed appropriately.  

 
1.4.1 Honeybee pathogens and parasites  

1.4.1.1 Viruses 

Honeybees can be infected by many viruses (Chen and Siede, 2007). A total of 23 viruses have 

been identified and characterized in honeybees (Chen et al., 2004; Chen and Siede, 2007; Runckel 

et al., 2011; McMenamin and Genersch, 2015; Gisder and Genersch, 2015). Most of these viruses 

are single-stranded positive RNA viruses of which six are the most common infections and hence 

form the focus of most honeybee virus research activities (Chen and Siede, 2007). These include: 

Deformed wing virus (DWV), Black queen-cell virus (BQCV), Sacbrood virus (SBV), Kashmir bee 

virus (KBV), Acute bee paralysis virus (ABPV) and Chronic bee paralysis virus (CBPV) (Chen and 

Siede, 2007; De Smet et al., 2012). 

 

The DWV and SBV belong to the genus Iflavirus, family Iflaviridae (Chen and Siede, 2007). The 

DWV has been detected worldwide (Ellis and Munn, 2005) and is the most prevalent honeybee 

virus (Chen and Siede, 2007). Infection of honeybees by DWV results in well-defined symptoms 

which include shrunken, crumpled wings, decreased body size and discoloration in adult bees 

(Chen and Siede, 2007). This honeybee virus has been detected in all stages (eggs, larvae, pupae 

and adult bees) of honeybee development (Chen and Siede, 2007; de Miranda and Genersch, 

2010). Infection of honeybees by DWV can result in suppression of the immunity system of 

honeybees (Di Prisco et al., 2016), reduction in the lifespan of bees (Chen and Siede, 2007) and 
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colony losses (de Miranda and Genersch, 2010). However, in the absence of V. destructor, DWV 

normally persists at low levels within the honeybee colony with no detrimental effects (Chen and 

Siede, 2007; de Miranda and Genersch, 2010). Transmission of DWV occurs both horizontally 

(fecal-oral, cannibal, Varroa-mite vectored) and vertically (parent-offspring) (de Miranda and 

Genersch, 2010).  

 

Like DWV, SBV has been detected in all continents where A. mellifera colonies are present (Chen 

and Siede, 2007). SBV attacks both brood and adult stages of honeybees (Shen et al., 2005; Chen 

and Siede, 2007). Larvae of about 2 days old are most susceptible to SBV infections (Chen and 

Siede, 2007) which result in larval death (Shen et al., 2005). Infection of adult bees by SBV causes 

no obvious signs of the disease but infected adult bees may have a shortened lifespan (Chen and 

Siede, 2007). The initial spread of SBV within a colony occurs when nurse bees become infected 

while removing larvae killed by SBV. Viral particles accumulate in the hypopharyngeal glands of 

nurse bees who can then spread the virus throughout the colony by feeding larvae with infected 

glandular secretions and exchanging contaminated food with other adult bees including foragers 

within the colony. Young larvae become infected with SBV by ingesting food contaminated with 

the virus. SBV starts to replicate in the larvae and infected larvae turn pale-yellow after the brood 

is capped. As the disease progresses, the skin of the larva becomes leathery and the larva fails to 

pupate because it cannot digest the old cuticle. Sacbrood derives its name from the saclike 

appearance of diseased larvae (Chen and Siede, 2007). 

 

The BQCV is an RNA virus within the genus Cripavirus (Family Dicistroviridae) (Mayo, 2002). It is 

one of the common viruses that affect honeybees (Chen and Siede, 2007). However, its 

implication in honeybee mortality remains poorly understood (Higes et al., 2007a). While the 

BQCV was reported as the major cause of queen larvae mortality in Australia (Somerville, 2010), 

the virus was detected in 86% of adult samples and 23% of pupae on a survey in healthy French 

bee colonies (Tentcheva et al., 2004), and recently in Austrian apiaries (Berényi et al., 2006). 

Diseased larvae have a pale yellow appearance and a tough sac-like skin, a symptom also 

observed in SBV infected larvae (Chen and Siede, 2007). The BQCV multiplies rapidly in pupal 
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stages of honeybees resulting in dark coloration and rapid death. The wall of the queen cell 

eventually becomes dark colored, a characteristic symptom of BQCV infection (Chen and Siede, 

2007). BQCV disease outbreaks have been linked with the microsporidian Nosema apis infection 

in honeybee colonies (Higes et al., 2007a). It is thought to be transmitted to queen brood via 

glandular secretions by nurse bees during feeding (Chen and Siede, 2007). Since N. apis infects 

the midgut of adult honeybees (Fries, 1988), it increases the susceptibility of the alimentary canal 

to BQCV infections (Chen and Siede, 2007). 

 

The ABPV, KBV and Israeli acute paralysis virus (IAPV) are closely related viruses from the Family 

Dicistroviridae (Mayo, 2002; Chen and Siede, 2007). Apart from having close genetic relationship, 

these viruses share a number of biological characteristics, such as the principal routes of 

transmission, the primary host life stage, and a low but widespread prevalence with a 

predominantly sub-clinical etiology that contrasts sharply with the extremely virulent pathology 

encountered at elevated titres, either artificially induced or encountered naturally (de Miranda 

et al., 2011). ABPV can be detected in brood and adult bees. And in the field, it is commonly found 

in apparently healthy colonies (Chen and Siede, 2007). ABPV spread in colonies occurs via 

infected salivary gland secretions from adult bees to young larvae or that is mixed with pollen.  

In addition, Varroa mites have been suggested as vectors of ABPV. This virus in association with 

Varroa mites has been linked to colony declines and collapse in Europe and America (Chen and 

Siede, 2007; de Miranda et al., 2011). 

 

KBV infects all life stages (eggs, larvae, pupae, adults) of the honeybee causing mortality without 

clear specific symptoms (Chen and Siede, 2007). The KBV is considered the most virulent 

honeybee virus under laboratory conditions because it multiplies quickly once a few viral 

particles are introduced into the hemolymph causing bee death within three days (Chen and 

Siede, 2007). KBV does not cause infection when adult bees are fed with food mixed with viral 

particles suggesting that the virus invades the bees through the cuticle. Varroa mites have been 

shown to vector KBV (Shen et al., 2005; Chen and Siede, 2007) and high mite infestation is linked 

to high virulence of KBV in infected colonies (Chen and Siede, 2007). 
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CBPV is a double stranded RNA honeybee virus that has not officially been assigned to a genus. 

The CBPV attacks mainly adult bees causing paralysis; trembling of the body and wings, crawling 

on the ground due to flight inability, bloated abdomen and dislocated wings (Chen and Siede, 

2007; Ribière et al., 2010). Another clear sign of CBPV infection is the presence of hairless, shiny 

and black appearing bees (Ribière et al., 2010) that are normally attacked and rejected from 

returning to the colonies at the entrance by guard bees (Chen and Siede, 2007). Although CBPV 

and ABPV cause similar symptoms such as trembling and inability to fly in infected bees, CBPV is 

less virulent (Chen and Siede, 2007). Spread of CBPV occurs via contaminated food and body 

contacts in overcrowded colonies (Ribière et al., 2010). 

 

Although, only one honeybee virus (BQCV) had been confirmed in Uganda before my present 

study (Kajobe et al., 2011), there has been growing concern regarding the health status of local 

honeybee colonies especially with the discovery of the recently introduced Varroa mites which 

are vectors of different viruses. The detailed Ugandan honeybee viral pathosphere and 

distribution had not been clearly understood despite the documented impacts of some honeybee 

viruses in Europe and America.  

 
1.4.1.2 Bacterial brood pathogens 

There are two known serious brood bacterial pathogens of honeybees. These are Paenibacillus 

larvae: the causative agent for American foulbrood (AFB), and Mellisococcus plutonius: the 

causative agent for European foulbrood (EFB) (Genersch, 2010b). These bacterial pathogens have 

been reported worldwide (Ellis and Munn, 2005; Genersch, 2010a; Morrissey et al., 2014) and 

are threats to the health of honeybee colonies (Genersch, 2010b). For instance, P. larvae 

produces spores that can survive for long periods and are resistant to heat and chemical agents 

(Genersch, 2010a). As a result, AFB is listed in the Office International des Epizooties – the World 

Organization for Animal Health (OIE) Terrestrial Animal Health Code (2011) and member 

countries and territories are obliged to report its occurrence (OIE, 2011). 

 

AFB transmission occurs mainly through the horizontal routes (Mill et al., 2014) via  various bee 

behaviours (robbing and drifting), beekeeping practices and infected honey (Genersch, 2010), 
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but it is also known to be transmitted vertically as honeybees swarm (Fries et al., 2006). Although 

Paenibacillus larvae has a worldwide distribution (Ellis and Munn, 2005), few confirmations of 

the AFB disease have been made in Africa (Pirk et al., 2015).  

 

Similarly, EFB is transmitted horizontally with adult worker bees acting as carriers of the 

bacterium both within the colony and between colonies and apiaries (Forsgren, 2010). Like AFB, 

EFB has a worldwide distribution (Forsgren, 2010; Budge et al., 2010) but no confirmations have 

been made in several African countries including Uganda. In Africa, EFB has been reported in 

Algeria, Libya, Morocco, Tunisia, Tanzania, Guinea-Bissau and Senegal (Hussein, 2001). Since 

African honeybee races abscond and swarm often (Pirk et al., 2015), pathogens such as P. larvae 

might be circulating between feral and managed colonies but at low infestation levels due to the 

predominant use of fixed comb beehives (Gupta, 2014). However, with the increasing promotion 

and use of frame beehives, the situation could change necessitating planning for the 

management of the parasites and pathogens circulating in local honeybee populations.  

 

1.4.1.3 Fungal brood parasites 

Ascosphaera apis is an important fungal brood pathogen of honeybees causing the chalkbrood 

disease (Jensen et al., 2009). A. apis only produces sexual spores and is heterothallic, thus spores 

are only produced when mycelia of the two opposite mating types come together and fruiting 

bodies are formed (Aronstein et al., 2007). Infection of honeybee larvae primarily occurs when 

they ingest food contaminated with spores (Jensen et al., 2009). The spores germinate in the 

lumen of the gut because of the presence of suitable conditions such as high carbon dioxide 

concentration. Infected larvae are covered by a white, chalky mycelium, dying after their brood 

cells are sealed. Larvae infected by this fungus are mummified and show different colors (Jensen 

et al., 2013).  

 
1.4.1.4 Microsporidia 

The microsporidia are specialized parasitic fungi which invade the midgut epithelial cells of 

honeybees. Two species of Microsporidia (Family Nosematidae), Nosema apis (Zander, 1909) and 
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Nosema ceranae (Higes et al., 2006; Huang et al., 2007; Traver et al., 2012) infest the honeybee 

worldwide. N. ceranae was originally described as a parasite of Apis cerana (Fries et al., 1996) 

but was later reported as a pathogen of A. mellifera (Higes et al., 2006; Huang et al., 2007). Both 

microsporidian species are obligate intracellular parasites of the midgut of honeybees and have 

been reported in all continents (Ellis and Munn, 2005). N. apis and N. ceranae have similar 

morphologies under an optic microscope and SSU rRNA sequence identity is 92% (Fries et al., 

1996). However, under the transmission electron microscope, spores of N. ceranae are smaller 

than those of N. apis (Huang et al., 2007).  In addition, spores of N. ceranae have fewer (20 to 23) 

polar filament coils (Fries et al., 1996) than N. apis which usually contains over 30 polar filament 

coils (Huang et al., 2007). 

 

Some recent reports suggest an apparent displacement of N. apis by N. ceranae (Paxton et al., 

2007; Martín-hernández et al., 2012). However, this replacement of N. apis by N. ceranae is not 

supported when the distribution and prevalence of both microsporidia in different climatic 

conditions is considered. N. ceranae infections appear to dominate in the warmer and temperate 

regions, whereas N. apis is more common in colder climates (Martin-Hernandez et al., 2012). 

Both species seem to have different seasonal patterns (Runckel et al., 2011; Martin-Hernandez 

et al., 2012). 

 

N. apis infection in honeybees causes Nosemosis type A which results in significant damage of 

the gut tissue, reducing winter survival in temperate climates, honey production and pollination 

effectiveness (Pacini et al., 2016). On the other hand, infection of honeybees by N. ceranae 

causes Nosemosis type C which can lead to nutritional and energetic stress (Mayack and Naug, 

2009), suppression of the host immune response (Antúnez et al., 2009) increasing susceptibility 

to other pathogens and decreased host survival at the individual level (Higes et al., 2007b). The 

prevalence of N. ceranae and N. apis worldwide has raised concerns within the beekeeping 

industry especially with the recent declines in honeybee populations. 
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Transmission of N. apis is primarily through the oral-fecal route and the same route of 

transmission has been demonstrated for N. ceranae (Smith, 2012). Honeybees become infected 

with Nosema by ingesting food contaminated with the spores. Under laboratory conditions, 

when a bee ingests N. apis spores, germination and production of spores occurs within four days 

post infection (Fries, 1988). For N. ceranae, by day 3 post infection, spore infections in the 

epithelial cells of the midgut could be detected (Higes et al., 2007b). Sporulation of N. apis occurs 

only in the host honeybee’s midgut epithelium, while N. ceranae has been reported to infect the 

honeybee alimentary canals, malpighian tubules, hypopharyngeal glands, salivary glands and fat 

body (Chen and Huang, 2010). 

 

1.4.1.5 Varroa mites 

Varroa mites are ecto-parasites of honeybees parasitizing on both brood and adult bees. Four 

species of Varroa mites are recognized and these include: Varroa jacobsoni (Oudemans, 1904), 

Varroa underwoodi (Delfinado-Baker & Aggarwal, 1987), Varroa rindereri (De Guzman & 

Delfinado-Baker, 1996) and Varroa destructor (Anderson & Trueman, 2000). These mites were 

first described in their natural host, the Asian honeybee, Apis cerana (Goodwin & Eaton, 2001) 

which co-evolved with the mite to develop a natural resistance (Navajas et al., 2010; Le Conte, 

Ellis, & Ritter, 2010). However, the mites switched host to the European honeybee, A. mellifera 

(Zhang, 2000) because of movement of honeybee colonies to the Far East with the aim of 

improving honey production (Le Conte et al., 2010). V. destructor has spread to all continents. 

However, the extent of spread and infestation levels in most parts of Africa remains to be 

explored. 

 

Female Varroa mites enter honeybee brood cells containing the last instar of honeybee larvae to 

lay their eggs. Normally, the first egg which is usually unfertilized is laid approximately 70 hours 

after cell capping and it develops into a male mite. Afterwards, fertilized female eggs are laid in 

intervals of 30 hours. As a result, the male mite develops first and mates with the females within 

the brood cell. On average, a single female mite will lay five eggs in worker brood and six eggs in 

drone brood. The eggs of the mite hatch to produce nymph that develops through two nymphal 
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stages, the protonymph and deutonymph before molting into an adult (Rosenkranz et al., 2010). 

The Varroa mite feeds on the hemolymph of the last instar larvae, pupae and adult bees resulting 

in serious weight loss and reduction of honeybee life span (Rosenkranz et al., 2010). Infestation 

of honeybees by Varroa also results in severe impact on honeybee health since the mites 

suppress honeybee immunity (Navajas et al., 2008; Navajas et al., 2010) and transmit honeybee 

viruses (Rosenkranz et al., 2010). 

 

Until 2009, V. destructor was only found in honeybee colonies in Kenya but not in Uganda (Fazier 

et al., 2010). However, by 2013, the mite was found to be widely distributed in Uganda (Kasangaki 

et al., 2015). This suggests that Varroa mites could have invaded Uganda more recently than 

neighboring Kenya. Varroa mites get into new environments through movement of infested 

honeybee colonies (swarming/migration). In addition, human activities such as honeybee colony 

inspections and colony division practices contribute to the dispersal of Varroa mites (Navajas et 

al., 2010). With the on-going rapid movements of people and beekeeping goods, the rate of 

dispersal of this mite and other honeybee parasites and pathogens may increase. Currently, 

limited information is available on V. destructor infestation levels and effects on honeybee 

colonies in Uganda. Investigations are therefore needed to establish V. destructor infestation 

levels and their impacts on honeybee colonies for informed decision making. 

 
1.4.1.6 Other honeybee parasites and pathogens 

Tropilaelaps mites 

The Tropilaelaps mites are ectoparasites of honeybee brood  with a short phoretic phase on adult 

honeybees. Adults of this parasite cannot fly and require honeybee brood to survive. Different 

species of Tropilaelaps mites including: Tropilaelaps clareae, T. koenigerum, T. thaii and T. 

mercedesae infest honeybees (Anderson & Morgan, 2007). The native primary hosts of 

Tropilaelaps are the non-domesticated giant Asian honeybees, Apis dorsata, A. breviligula and A. 

laboriosa. Following its host shift to A. mellifera, Tropilaelaps has spread from mainland Asia to 

bordering areas and is currently prevalent in Indonesia and the Philippines to Afghanistan, Iran, 

New Guinea and South Korea. The infestation and feeding activities of the Tropilaelaps mites 

reduces the western honeybee longevity and emergence weight and promotes DWV infections 
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(Khongphinitbunjong et al., 2016). As such, the Tropilaelaps mites are one of the most damaging 

pests of the honeybees (Anderson & Morgan, 2007; Dainat et al., 2009). Currently, the 

Tropilaelaps mites remain confined to Asia and bordering areas but are recognized as emerging 

threats to world beekeeping (Anderson & Roberts, 2013). 

 

Acarapis woodi  

This is an internal parasitic mite of the honeybee respiratory system. It feeds on the hemolymph 

of honeybees. Honeybee infestation by A. woodi causes obstructions of the trachea, lesions and 

hemolymph depletion (Sammataro et al., 2013). It is considered to be associated with poor 

winter survival in honeybees (McMullan & Brown, 2009). A recent study detected A. woodi in A. 

cerana collapsing colonies in Japan (Kojima et al., 2011). This mite has been reported almost 

worldwide (Ellis & Munn, 2005) and in most countries in Africa (Matheson, 1993). Since 

overwintering does not occur at the same scale in Africa as Europe, mite infestations may not 

result in the severe damage as seen in European countries (Pirk et al., 2015). However, very 

limited data are available on the presence, infestation levels and effects of these mites in African 

honeybee colonies.  

 

Trypanosomatid parasites 

Honeybees are also parasitized by trypanosomatids which belong to the class Kinetoplastea 

(phylum Euglenozoa) and order Trypanosomatida. Parasites in the class Kinetoplastea are 

characterized by a kinetoplast DNA, a network of condensed mitochondrial DNA (Adl et al., 2013). 

Trypanosomatids have one flagellum and can change their morphology during their life cycle 

(Field & Carrington, 2009). Some groups in the class Kinetoplastea complete their lifecycle in one 

host (monoxenous), others like the human parasites Trypanosoma spp. and Leishmania spp. 

require a second host (dixenous) (Lukeš et al., 2014).  

Although honeybees are known to be parasitized by trypanosomatids, limited studies have 

focused on these parasites. For instance, since Crithidia mellificae (Family Trypanosomatidae) 

was described in 1967 (Langridge and Mcghee, 1967), it remained ignored until molecular 

markers were developed (Schmid-Hempel & Tognazzo, 2010) and cell culture techniques became 
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available (Runckel et al., 2011). A recent study showed that Lotmaria passim is the predominant 

trypanosomatid of honeybees and was previously considered to be C. mellificae suggesting that 

all previous reports of C. mellificae should be reconsidered (Schwarz et al., 2015). C. mellificae 

was shown to contribute to honeybee colony collapses (Ravoet et al., 2013) hence highlighting 

the relevance of investigating it. In Africa, C. mellificae has been detected in Algeria (Menail et 

al., 2016). However, it remains to be investigated in most parts of sub Saharan Africa.  

 

Hive beetles 

The small hive beetle (SHB), Aethina tumida is a honeybee pest which is native to sub-Saharan 

Africa, where it was previously considered a minor pest (Neumann & Elzen, 2004; Cuthbertson 

et al., 2013). However, recent field observations in Malawi (Dr. Wim Reybroeck personal 

communication) and Uganda (Dr. Patrice Kasangaki, personal communication) indicate 

destructive effects of SHB on African honeybees. The beetles are harmful pests of the European 

honeybee subspecies (Hood, 2000). They are bee brood scavengers of A. mellifera, Bombus spp. 

(bumble bee) and Melliponini (stingless bees) (EFSA, 2013). The SHB is a flying, free-living 

coleopteran (Family: Nitidulidae) that can survive and reproduce on ripe fruits, but not on 

vegetables, plants or flowers (EFSA, 2013). Adult SHB can detect airborne volatiles produced by 

A. mellifera and Bombus spp. and can be attracted to the odours of bees and beehive products. 

Mature larvae of the SHB leave the hive and burrow in the soil to pupate. The SHB larval stage is 

destructive to bee populations, whereas the adults have little impact (EFSA, 2013). 

 

Since 1998, there has been considerable international attention on the SHB due to their invasion 

of honeybees in the USA (Elzen et al., 1999), Australia (Neumann & Elzen, 2004b; Spiewok et al., 

2007) and Italy (Mutinelli et al., 2014). This is attributed to heavy infestations of SHB inducing 

absconding (Ellis et al., 2003; Spiewok et al., 2006) and reducing honey stores (Ellis et al., 2003). 

Damage to honeybee colonies stems from the feeding habits of both adult and larval SHB (Elzen 

et al., 2001; Neumann & Elzen, 2004). The SHB larvae burrow through combs, eat honey and 

pollen, kill bee brood and defecate in honey which subsequently ferments leading to reduced 

quality and quantity of beehive products (EFSA, 2013). In contrast, successful reproduction of the 
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beetle in African honeybee colonies is often restricted to weak host colonies due to behavioral 

resistance mechanisms (Elzen et al., 2001; Neumann & Hartel, 2004), or is associated with after 

absconding events (Cuthbertson et al., 2013). Moreover, absconding is common in African 

honeybee subspecies (Chemurot et al., 2016) and can be triggered by parasite infestations and 

severe small hive beetle infestations (Hood, 2004). Therefore absconding is an important escape 

mechanism by honeybees to avoid pest or parasite infestation. 

 
1.4.2 Anthropogenic factors influencing bee health 

Human activities such as agriculture have impacts that affect a wide range of ecosystem services, 

including pollination and biodiversity conservation (Dale & Polasky, 2007). Intensive agriculture 

and continued movements of humans, honeybees and beekeeping equipment directly affect 

honeybees. This can be through exposure of honeybees to pesticides used in agriculture which 

may have lethal (Kevan, 1975; Greig-Smith et al., 1994) or sub-lethal behavioral or physiological 

effects (Thompson, 2003; Quarles, 2011). Such effects on honeybees may lower their immunity 

making them more vulnerable to parasites like Varroa mites. On the other hand, movements of 

people, honeybees and beekeeping equipment can lead to direct transfer of honeybee pests and 

pathogens. These movements may lead to increased contact of honeybees with new pests and 

infectious agents. In Uganda, agriculture is growing and involves movements of people and 

equipment from one place to another. Such movements could have led to introduction of new 

honeybee parasites into the country.  

 

1.4.3 Honeybee traits influencing honeybee health  

The behavior of honeybees just like other animals is influenced by internal factors. These internal 

factors influencing honeybee behavior are the genetic material that is inherited from the queen 

and drones. For instance, the hygienic behavior of honeybees which involves inspection, 

uncapping and removal of diseased and dead bee brood from the colony is determined by two 

independent gene loci (Stanimirovic et al., 2002). This behavior is believed to have an important 

role in honeybee defense against parasitic and infectious pathogens (Bekesi & Szalai, 2003; 

Palacio et al., 2010). A recent study by Nicodemo et al. (2013) showed that honeybee lines that 
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are selected for high propolis production also have superior hygienic behavior and increased 

honey and pollen stores. Moreover, it has been shown that infestation of honeybee colonies by 

parasites like Varroa mites and their impacts vary with honeybee heritable traits and behavioral 

adaptations (Rosenkranz, 1999; Buchler et al., 2010; Calderón et al., 2010; Rinderer et al., 2010; 

Emsen et al., 2012). 

 

Furthermore, the honeybee grooming behavior is an important trait which reduces honeybee 

parasite infestation levels. For example, V. destructor infestation levels have been shown to be 

lower in honeybees with high grooming levels (Rosenkranz et al., 2010; Calderón et al., 2010). 

Also, the brood effect associated with suppressed Varroa mite reproduction (Harbo & Harris, 

2005) which can be related to the hygienic behavior, short brood post capping periods or 

honeybee genetics (Rosenkranz et al., 2010; Calderón et al., 2010) can control Varroa mites. 

Consequently, the health, productivity and strength of honeybee colonies with these traits have 

been reported not to be affected by parasites and pathogens (Muli et al., 2014; Strauss et al., 

2015). 

 

1.4.4 Landscape factors influencing honeybee health 

Studies on parasites including ticks (Gern et al., 2008; Shchuchinova et al., 2015) and mosquitoes 

(Eisen et al., 2008; Lozano-Fuentes et al., 2012) among others suggest that landscape factors 

influence their abundance and distribution. For instance, a study in Switzerland showed that tick 

densities at high elevations were lowest compared to low altitudes (Gern et al., 2008). The lower 

tick densities at high elevations were attributed to low temperatures that affect tick development 

(Gern et al., 2008; Shchuchinova et al., 2015).  

 

Similarly, elevation has been cited to influence Varroa mite infestation levels (Muli et al., 2014; 

Mumbi et al., 2014). Furthermore, vegetation around apiaries influences parasite infestation 

levels. For example, epizootiological studies on the microsporidian honeybee gut parasite, N. 

ceranae in honeybee colonies have shown high infestation levels under Eucalyptus grandis 

plantations due to nutritional deficits (Invernizzi et al., 2011). Although the potential influence of 
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landscape factors on some honeybee parasite and pathogen infestation levels are fairly known, 

the exact mechanisms through which these factors influence parasite infestation remains to be 

explored. 

 

Uganda has an altitudinal gradient ranging from 620 meters (Albert Nile) to 5,111 meters (Mt. 

Rwenzori) (Kabi et al., 2014). It is endowed with varying climatic conditions and vegetation types 

that support different land uses. Based on vegetation type, elevation, climatic conditions and the 

agricultural activities, Uganda is divided into ten (10) production or agro-ecological zones (Kajobe 

et al., 2009). Despite the known varying altitudes and land uses in Uganda, no studies had 

investigated the potential influence of these factors on the distribution of honeybee parasites 

and pathogens in the country. Knowledge of these parameters could be useful in planning for 

honeybee parasite and pathogen management in the country to reduce any likely risks. The 

honeybee sampling and analysis for this study was conducted in two AEZs having altitudinal 

gradients and varying land uses in order to capture the variations within the country. 

 

1.5 Conceptual framework 

Interactions between landscape components have consequences on honeybee parasites and 

pathogens (Figure 1.2). In general, landscape factors like altitude and vegetation directly or 

indirectly affect environmental conditions such as temperature, humidity, wind speed and 

availability of honeybee forage. Also, landscape factors influence land use types with intensive 

farming activities taking place at elevations that allow easy mechanization. Consequently, areas 

that have high farming intensities are likely to have reduced honeybee forage diversity and tend 

to have high pesticide levels. Horizontal spread of honeybee parasites and pathogens is also 

assumed to increase with intensified human activity in farmlands. Poor honeybee nutrition 

arising from high farming intensity and the use of pesticides is likely to lower the immunity of 

honeybees making them more susceptible to infections by parasites and pathogens. High 

parasite/pathogen infestation levels in honeybees may have negative impacts that include 

lowering of colony strength and productivity which consequently lead to poor incomes from 

beekeeping. 
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Figure 1.2: Interactions between landscape factor components and their consequences on 

honeybee parasites and pathogens. 
 

1.6 Problem statement 

Although the beekeeping industry in Uganda is growing and providing a source of food, medicine, 

income and employment to many rural households (UEPB, 2005), the potential threat from 

honeybee parasites and pathogens poses challenges to the sector. Some of the parasites which 

have devastated the beekeeping industry in Europe, Asia and North America have already been 

registered in Africa. For example, Varroa mites which cause varroosis have been confirmed in 

Uganda (Kasangaki et al., 2015; Chemurot et al., 2016) and Kenya (Fazier et al., 2009) among 

many Varroa-suspect countries. This mite is known to transmit ABPV, Kashmir bee virus (KBV) 

(Bakonyi et al., 2002) and DWV in honeybees (Shen et al., 2005) among others. However, before 

the current study, only one documented study in Uganda (Kajobe et al., 2010) investigated the 

presence of honeybee viral diseases. On the other hand, no studies had investigated the 

presence, prevalence, infestation levels and the effects of honeybee bacterial, protozoan and 

fungal diseases on honeybee performance in Uganda. The current study investigated the 

distribution and infestation levels of honeybee parasitic Varroa-mites, bacterial, fungal and viral 

pathogens and their effects on honeybee colony performance in the eastern and western 
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highlands AEZs of Uganda. It contributes to addressing honeybee health threats by assessing the 

potential influence of landscape and human factors on the distribution and infestation levels of 

honeybee parasites and pathogens in the two agro-ecological zones of Uganda. 

 

1.7 Objectives 

1.7.1 Overall objective 

The general objective of this study was to investigate honeybee parasites and pathogens and 

their effects on colony performance in two highland agro-ecological zones (AEZs) of Uganda.  

 

1.7.2 Specific objectives 

1. To establish the infestation levels and distribution of honeybee parasitic Varroa mites, 

fungal, bacterial and viral pathogens. 

2. To assess the potential influence of landscape factors on the infestation levels of 

honeybee parasites and pathogens. 

3. To evaluate the effects of honeybee parasitic Varroa mites, bacterial, fungal and viral 

pathogens on honeybee colony performance. 

 

1.8 Research questions 

1. Which honeybee parasites and pathogens are present in honeybee colonies in the eastern 

and western highland agro-ecological zones of Uganda? 

2. Are there any relationships between honeybee parasite/pathogen infestation level or 

distribution and landscape factors (altitude, vegetation, and human activities) in the 

eastern and western highlands AEZs of Uganda?  

3. What are the effects of honeybee parasitic Varroa mites, fungal, bacterial and viral 

pathogens on honeybee colony performance in the eastern and western highlands AEZs 

of Uganda? 
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1.9 Justification of the study 

This study was conducted in Uganda, East Africa. Uganda occupies a total area of 241,550.7 km2 

out of which 41,027.4 km2 are open water bodies and wetlands while 200,523.2 km2 is dry land 

(UBOS, 2014). The country has an altitudinal gradient ranging from 620 meters (Albert Nile) to 

5,111 meters (Mt. Rwenzori). According to the 2014 national housing and population census, 

Uganda’s population was 36.6 million persons and the majority (>80%) of this population 

depends on agriculture for their livelihoods (UBOS, 2014). This work was critical because the 

demand for honey and other beehive products in Uganda has been increasing. For instance 

Uganda was licensed to supply honey to the European Union in 2005 (UEPB, 2005) but is not 

meeting its quota (Mr. Dickson Biryomumaisho personal communication). Also, since majority of 

households in Uganda rely on agriculture which is dependent on bee pollination, threats to 

honeybee health directly impact on the livelihoods of the majority of the population. 

Furthermore, other livestock enterprises like poultry rely on feeds with crop origins such as 

sunflower seed cake. Therefore, Uganda must maintain a healthy honeybee population to meet 

the demand for beehive products and honeybee pollinated agriculture. 

 

Effective honeybee disease management programs require adequate and accurate information 

on the prevalence and distribution of honeybee parasites and pathogens. Currently, there is no 

proper honeybee disease surveillance and management plan in Uganda partly due to lack of 

adequate information on the presence and distribution of honeybee parasites and pathogens. 

This study investigated the potential influence of landscape and human factors on the 

distribution of selected honeybee parasites and pathogens (Varroa mites, fungal, bacterial and 

viral pathogens due to the threats they pose elsewhere to beekeeping) in two highland AEZs of 

Uganda. In addition, this study assessed the effects of the selected honeybee parasites and 

pathogens on colony performance. It therefore provides baseline data on honeybee parasites 

and pathogens in the country. From this study, we understand current and potential threats to 

Ugandan honeybee health and honeybee dependent crop production. The findings provide an 

understanding of the magnitude of the honeybee health problem for creating awareness and 

developing a long term surveillance system for honeybee pests, parasites and pathogens. 
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Information from this study is vital and will contribute to the designing of honeybee disease 

surveillance and management plans to avert the likely honeybee health threats to the 

beekeeping industry and food security. Furthermore, the results of this study such as the 

detection of a new microsporidian highlight gaps that require more research for better 

understanding of several aspects including parasite development and epidemiology.  

 
1.10 The research outline of this thesis 

This study was designed to further our understanding of honeybee host-pathogen/parasite 

interactions under varying landscape factors in African honeybees. Specifically, 11 honeybee 

viruses in addition to P. larvae, M. plutonius, A. apis, Nosema spp. and V. destructor were 

investigated. These pathogens and parasites were selected because they are important threats 

to honeybee health worldwide. Moreover, some of these parasites and pathogens e.g. V. 

destructor, Nosema spp. and viruses like DWV and IAPV have been associated with colony losses 

in Europe and North America.  

 

The output of this thesis is presented in four research chapters. In the first research chapter 

(Chapter 2), honeybee viral pathogens in Ugandan colonies were explored with the aims of: 1) 

understanding the landscape infection rates of honeybee viruses and 2) highlighting the possible 

extent to which the common RNA viruses are affecting honeybee colony performance. In Chapter 

3, we employed pathogen culturing techniques to determine the presence of honeybee brood 

bacterial and fungal pathogens in Ugandan honeybee colonies. The aim here was to establish the 

presence and distribution of brood pathogens in honeybee populations in the two highland agro-

ecological zones of Uganda and to determine if honeys that were locally retailed contained P. 

larvae, a lethal pathogen of honeybees. In Chapter 4, we explored the microsporidian parasite 

infestation in Ugandan honeybees with the aim of: 1) identifying the Nosema spp. present; 2) 

understanding the variation in infection levels among honeybee colonies located in areas of 

different land-use types and elevations and 3) determining effects of infections on honeybee 

colony performance. Finally, in chapter 5, we investigated the haplotype of Varroa mites and 
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potential factors that influence their infestation levels in the eastern and western highland AEZs 

of Uganda.  
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Chapter 2 

2.1 Abstract 

Honeybee viruses pose significant threats to the health of the honeybee, Apis mellifera. In this 

study, the distribution of honeybee RNA viruses was investigated in two highland agro-ecological 

zones of Uganda each with an altitudinal gradient and varying land uses. The aim was to 

understand the landscape infection rates and the extent to which the common RNA viruses were 

affecting honeybee colony strength and productivity. Honeybee samples from colonies without 

any observable health problems were collected during the dry and wet seasons between 

December 2014 and September 2015. The samples were screened for common RNA viruses using 

PCR based techniques. Five honeybee viruses were detected in both the eastern and western 

highland agro-ecological zones of Uganda. These viruses include: Deformed wing virus (DWV) 

(51.9%), Black queen cell virus (BQCV) (20%), Acute bee paralysis virus (ABPV) (9.5%), Lake Sinai 

virus (LSV) (2.5%) and Sacbrood virus (SBV) (2.5%). Four of these viruses (DWV, BQCV, ABPV and 

SBV) were detected in feral colonies. Furthermore, multiple RNA viruses were prevalent in 

Ugandan honeybee colonies during the wet season. We show that the numbers of multiple 

honeybee virus infections were correlated to elevation, height of hive placement and distances 

to potential water sources, suggesting that environmental factors modulate honeybee viral 

infestation rates. Furthermore, Varroa infestation levels were positively correlated with the 

number of viral infections suggesting that Varroa was vectoring the viruses. However, 

surprisingly no honeybee viruses were detected in the sampled Varroa mites from virus-positive 

colonies. Increased viral diversity in Ugandan honeybee colonies reduced their performance. 

Based on these findings, honeybee health monitoring programs are urgently needed to keep 

track of the interactions between African honeybee races, viral pathogens and Varroa mite 

vectors.  

 

Key words: Apis mellifera; Colony performance; Landscape factors; Pathogens; RNA viruses  
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2.2 Introduction 

Honeybee viruses are of particular interest in beekeeping because they are suspected to be 

drivers of honeybee colony declines and have been reported globally (Manley et al., 2015). Until 

now, at least 23 viruses have been shown to infect honeybees, Apis mellifera (Chen et al., 2004; 

Chen & Siede, 2007; Runckel et al., 2011; McMenamin & Genersch, 2015; Gisder & Genersch, 

2015). Most of these honeybee viruses are positive strand RNA viruses belonging to 

Picornavirales (Mayo, 2002). 

 
The majority of honeybee viral infections are asymptomatic especially at low virus titer levels. 

However, at high virus titers associated with transmissions within the honeybee colony, 

symptoms such as deformities in wings for Deformed wing virus (DWV) (de Miranda & Genersch, 

2010), swollen yellow larvae and/or dark brown larvae carcasses in the cells of worker bees for 

Sacbrood virus (SBV) (Shen et al., 2005), enlarged dark stained queen cell walls for the Black 

queen cell virus (BQCV) (Gajger, Bičak, & Belužić, 2014), hairless, dark and shiny bees for chronic 

bee paralysis virus (CBPV) can be observed (Chen & Siede, 2007; Ribière et al., 2010). Some viral 

infections also cause behavioral changes such as shivering, paralyses, disorientation, aggression 

or altered foraging preferences or changes in brood care (Ribière et al., 2010).  

 
At least nine viruses have been reported in A. mellifera colonies from Africa (Pirk et al., 2015). 

These include: BQCV (Kajobe et al., 2011; Muli et al., 2014; Amakpe et al., 2015), DWV (Loucif-

Ayad et al., 2013; Muli et al., 2014; Haddad et al., 2015; Menail et al., 2016) Acute bee paralysis 

virus (ABPV) (de Miranda et al., 2011; Muli et al., 2014; Amakpe et al., 2015), Lake Sinai virus 

(LSV) (Amakpe et al., 2015; Menail et al., 2016), Varroa destructor virus 1 (VDV-1), Israeli acute 

paralysis virus (IAPV) (Strauss et al., 2013), CBPV (Pirk et al., 2015), Apis mellifera filamentous 

virus (AmFV) (Pirk et al., 2015), and SBV (Mumoki et al., 2014; Pirk et al., 2015). However, the 

complete virus pathosphere in African honeybee colonies remains to be fully explored since 

relatively very few epizootiological studies have been conducted. Also, the intricate dynamics of 

multiple viral infections and their effects on African honeybee races has not been studied to date. 

Therefore, understanding the current distribution of potential virus threats to African honeybee 

health will be helpful in informed decision making. 
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A recent study in Uganda confirmed the presence of BQCV (Kajobe et al., 2011) raising concerns 

on the health of Ugandan honeybees. The combination of the recently introduced Varroa mites 

in the country (Kasangaki et al., 2015; Chemurot et al., 2016a) and the presence of BQCV (Kajobe 

et al., 2011) and Paenibacillus larvae, the causative agent for American foulbrood (Chemurot et 

al., 2016b), may negatively influence the honeybee health. In addition, Varroa mites are known 

to transmit honeybee viruses like DWV (Shen et al., 2005), IAPV and ABPV (Di Prisco et al., 2011). 

However, although Varroa mites had been detected in Uganda, these viruses had not been 

confirmed in the country until the present study. As such, honeybee viruses should be included 

in epizootiological studies in order to plan for better management of honeybee health.  

 
This study investigated the presence and distribution of known honeybee viruses in Ugandan 

honeybee colonies. The colonies were sampled from two highland AEZs of Uganda each with an 

altitudinal gradient and varying land uses to; (i) understand the landscape infection rates of 11 

disease causing common RNA viruses, (ii) study the possible correlation between virus infection 

rates and Varroa mite infestation levels, (iii) quantify and compare the infection rates of 11 RNA 

viruses in honeybee colonies located in farmlands and protected areas, and (iv) assess the extent 

to which 11 RNA virus infections are affecting honeybee colony performance. We screened for 

the most common RNA viruses that have been confirmed to affect honeybee health or linked to 

colony losses in North America and Europe; ABPV, KBV, IAPV, CBPV, BQCV, DWV, Aphid lethal 

paralysis virus strain Brookings (ALPV), SBV, Slow bee paralysis virus (SBPV), LSV and Big Sioux 

River virus (BSRV). We show that multiple RNA viruses were prevalent in some Ugandan 

honeybee colonies and present evidence for possible reduction in honeybee colony strength and 

productivity due to increased viral diversity. 

 
2.3 Materials and methods 

2.3.1 Study area 

For proper agricultural planning, zoning of the land is critical in order to achieve increased 

productivity (Eledu et al., 2004). Agro-ecological zoning categorizes land areas based on factors 

that include: soil, altitude and climatic characteristics (FAO, 1996). Uganda is divided into ten (10) 
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agro-ecological zones (AEZs) based on vegetation type, elevation, climatic conditions and 

agricultural activities. Honeybee sampling for this study was conducted in two AEZs of Uganda 

namely; eastern and western highlands AEZs of Uganda (Figure 2.1). These study sites were 

purposively selected because they have beekeeping activities at varying altitudinal levels and in 

areas of varying land uses which allow comparative studies. The altitudinal and land use 

variations provide conditions for investigating the potential influence of landscape factors on the 

distribution of honeybee pathogens that can be used for designing honeybee disease 

management strategies.  

 
The eastern highlands receive bimodal rainfall ranging from 900 to over 2100 mm per year. This 

zone has a minimum temperature of about 7.5oC and the altitude within this AEZ varies from 

1000 to 4000 m above sea level (Wasige, 2009; NEMA, 2009). The farming system here is 

intensive banana and coffee production. The districts that were sampled in this zone included 

Mbale and Kapchorwa (Figure 2.1) chosen on the basis of having beekeepers both in agricultural 

and non-agricultural areas. The climate in Mbale and Kapchorwa districts is classified as tropical 

with average temperatures of 23.0 °C and average rainfall of 1183 mm/year (https://en.climate-

data.org/location/30666/; https://en.climate-data.org/location/780530/). In both districts, the 

driest month is January with lowest precipitation. Most precipitation falls in May.  

 

The western highlands are a narrow zone along the western boundary of Uganda and include the 

Albertine rift valley famous for wildlife species diversity. Part of the western highlands is hot and 

dry with mean annual rainfall ranging from 875 - 1000 mm. In the higher altitude southern part 

(bordering the southern highlands), the mean annual rainfall exceeds 1875 mm. The mean 

altitude of the zone ranges from 600 - 4500 m above sea level (Kamanyire, 2000; Wasige, 2009; 

https://en.climate-data.org/location/30666/
https://en.climate-data.org/location/30666/
https://en.climate-data.org/location/780530/
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Figure 2.1: Location of study sites in the agro-ecological zones of Uganda.
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NEMA, 2009). In this zone, the study districts included Kasese and Kabarole (Figure 2.1). The 

climate in Kasese and Kabarole districts is also considered tropical. The average temperature in 

Kasese is 23.1 °C while the average annual rainfall is 1475 mm/year (https://en.climate-

data.org/location/505145/). For Kabarole district significant rainfall is received in most months 

and with a short dry season. The average temperature in Kabarole is 19.1 °C and the average 

rainfall is 1482 mm/year (https://en.climate-data.org/location/782724/). At the time of this 

study, beekeepers in Uganda were not treating for Varroa or any honeybee diseases and so far 

no Varroa related honeybee colony losses had been reported (Chemurot et al., 2016a). 

 

2.3.2 Field sampling  

For this study, two AEZs (eastern and western highlands) of Uganda were selected based on 

altitude and having beekeeping activities in and outside protected areas. Protected areas are 

public owned lands that currently receive government protection because of their recognized 

natural and ecological values. Within the AEZs, two districts in Mt. Elgon region and two districts 

around Queen Elizabeth National Park (QENP) selected based on altitude and beekeeping 

activities were sampled. In Mt Elgon region, Kapchorwa and Mbale districts were selected while 

around QENP, Kasese and Kabarole were selected. In each of the two AEZs, there were 

beekeepers practicing beekeeping in the protected area (National Park) following agreements 

with the park management while other beekeepers kept bees in farm lands and under Eucalyptus 

plantations. Here, a farmland refers to public or private land under agricultural crop cultivation 

while Eucalyptus plantations are areas with established Eucalyptus trees covering at least 0.5 

hectares.  

 
In each district, lists of beekeepers were obtained from the District Production offices and two 

sub-counties with the highest numbers of beekeepers were selected. Four apiaries in each sub-

county were selected (Figure 2.2) on the basis of altitude (Figure 2.3) and land uses. In the present 

study, altitude in apiaries ranged from 920 – 2,400 m above sea level. Based on this, apiaries 

were stratified in each study district according to altitude into four strata; low (< 1,200 m), mid-

https://en.climate-data.org/location/505145/
https://en.climate-data.org/location/505145/
https://en.climate-data.org/location/782724/
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low (1,201 - 1,500 m), high (1,501 – 1,800 m) and very high (> 1,801 m) and at least one apiary 

was sampled in each strata. 

 

In each apiary, honeybee colonies that were at least six months from the date of colonization 

were sampled to ensure that only established colonies were assessed. A total of 170 colonies 

from 32 apiaries and 7 feral colonies in the two AEZs were sampled during the dry season 

(December 2014 - February 2015). We decided to sample feral colonies because currently, 

beekeepers in Uganda majorly rely on feral colonies to populate their beehives and we were 

interested to know if feral colonies had similar parasites and pathogens with managed colonies. 

By the wet season, 38% and 45% of sampled managed colonies had absconded in the western 

highlands and eastern AEZs of Uganda respectively. During the second sampling (wet season: July 

- September 2015), 195 colonies were sampled. In cases where colonies sampled during the first 

sampling had absconded, new colonies within the same apiaries were sampled. Apiaries sampled 

were selected based on altitudinal gradients and land uses. The distance between one sampled 

apiary and the next was at least 3.5 km to minimize sampling honeybees foraging within the same 

area. The geographical coordinates and elevation at each apiary or feral colony nest site were 

taken using a global positioning system (GPS) receiver and observations made on human 

activities, apiary characteristics and landscape features such as the nature of slope and nearest 

potential honeybee water source. For this study, the nature of apiary slope refers to three 

categories of apiary slope gradient (steep, gentle and flat) while a potential water source is 

defined as the nearest stream/pond to the apiary. In apiaries sampled, there were between 3 to 

64 honeybee colonies. Therefore, at each apiary, at least six honeybee colonies were randomly 

selected and sampled whenever it was possible. Beekeepers managed their apiaries in different 

ways. Based on this, apiaries were categorized into four: apiaries with no management; 

occasionally slashed; well slashed; slashed plus inspected regularly.  

 

Furthermore, agriculture was being carried out at different levels in the study sites.  Therefore, 

apiaries were categorized depending on the level of agricultural/farming intensity around them 

into four categories, namely: protected area; new farmland; old farmland with tree plantation; 
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and old farmlands without tree plantations. Here, new farmlands refer to areas that were opened 

recently (< 5 years) and still have remnants of natural vegetation. Old farmlands with tree 

plantations are areas that were opened for farming more than five years ago but have parts that 

were replanted with tree plantations. On the other hand, old farmlands without tree plantations 

are sites that were opened for farming more than five years but no efforts have been made to 

replant trees in them.  

 

Where SC= sub county, A= apiary. 

Figure 2.2: Illustration of sampling strategy  
 

2.3.3 Evaluating mite infestation levels 

Varroa mite infestation levels on adult honeybees were determined as described in Chemurot et 

al., (2016a). Approximately, 300 worker honeybees were collected from inside each honeybee 

colony into a 100 ml sample bottle. The bee samples were immobilized by spraying with 95% 

ethanol. In order to estimate the number of honeybees collected per sample, 10 bees were 

weighed using an electronic balance (sensitive to 0.1g) and used to estimate the weight per bee. 
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Then all the bees in the sample bottle were weighed and their number estimated. After that, the 

honeybees in each sample were poured into separate 600 ml plastic beakers and 95% ethanol 

poured to completely immerse them. The beakers were wrapped with parafilm and vigorously 

shaken for 5 - 10 min before the contents were separated using a sieve of 2 mm mesh size. After 

sieving, 30 honeybees were placed in 15 ml tubes while the rest were disposed. Mites that 

collected on the filter paper were picked using a pair of forceps, counted and placed in 1.5 ml 

vials. The mite infestation level here refers to the number of mites per 300 bees in a given 

honeybee colony. Samples of mites and honeybees were preserved in 95% ethanol and placed in 

a cold chain until analysis. 

 

 

Where; A = < 1,200 m, B = 1,201 - 1,500 m, C = 1,501 – 1,800 m, D > 1,801 m. 

Figure 2.3: Stratification of the study sites based on elevation. 
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 2.3.4 Sample storage and transportation 

Honeybee samples were kept in 95% ethanol in a cold chain for two months before being 

transported to the Laboratory for Molecular Entomology and Bee Pathology (L-MEB) in Ghent, 

Belgium for analyses. 

 

2.3.5 Preparation of the honeybee sample homogenate 

Ten bees per sample (previously preserved in 95% ethanol) were removed and washed in 10 ml 

phosphate buffered saline (PBS) for 48 hours in a cold room (4oc).  The bees were then transferred 

to 5 ml tubes and homogenized in 5 ml PBS by mechanical agitation in a TissueLyser at maximum 

speed for 5 rounds, each lasting 5 minutes in the presence of metal and zircornia beads. One (1) 

ml of the extract was pipetted into 1.5 ml Eppendorf tube, centrifuged at 1,500 rpm for 10 min 

and the supernatant pipetted into another tube and centrifuged at maximum speed (13,300 rpm) 

for 15 min. The final supernatant was pipetted into new Eppendorf tubes and kept in the freezer 

at -20oc until used for RNA extraction. 

 

2.3.6 RNA extraction  

Total RNA was extracted from honeybee samples (n = 10 bees per colony) using the QIAamp® 

viral RNA kit following the manufacturer’s protocol and descriptions by Ravoet et al. (2013)  and 

Amakpe et al. (2015). Briefly, 560 µl of buffer AVL containing carrier RNA was pipetted into 1.5 

ml Eppendorf tubes. Then, 140 µl of the homogenized honeybee sample was added and briefly 

vortexed and centrifuged. After adding 560 µl of absolute ethanol, the mixture was briefly 

vortexed and centrifuged. The mixture was then pipetted into QIAamp columns and centrifuged 

at 8,000 rpm for 1 min. The columns were washed with 500 µl of buffer AW1 and AW2 and 

centrifuged according to the manufacturer’s protocol. Finally, the columns were transferred into 

1.5 ml Eppendorf tubes and 50 µl of AVE elution buffer carefully added and left to stand at room 

temperature for 1 min. This was centrifuged at 8,000 rpm for 1 min and the eluted RNA was kept 

at -80oC.  
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2.3.7 Detecting honeybee viruses 

Honeybee samples were screened for the presence of 11 viruses using the Multiplex Ligation-

dependent Probe Amplification (MLPA) technique following De Smet et al. (2012) and Ravoet et 

al. (2013). The MLPA technique can detect 8 honeybee viruses and one virus complex in one 

reaction and utilizes the reference gene β-actin (honeybee control gene) to validate negative 

results. This technique was selected because it works well even with highly degraded RNA since 

it requires only very short fragments of intact RNA (De Smet et al., 2012). Moreover proper 

honeybee sample preservation was difficult to achieve during field work in Uganda to allow for 

other screening techniques that require intact RNA. 

 

Each reaction was started with 1 µl RNA and 3.5 µl of the RT primer mix. The mixture was 

centrifuged before being placed in the thermocycler and programmed as follows: 1 min at 80oC 

and 5 min at 45oC. After denaturation of the sample, 0.68 µl of water, 0.68 µl SALSA enzyme 

dilution buffer and 0.15 µl reverse transcriptase were pipetted and mixed in each tube and 

incubated for 15 min at 37oC and 2 min at 98oC and stored at 25oC. Then, the probe mix was 

added; 1.5 µl SALSA probe-mix and 1.5 µl MLPA buffer were pipetted in each tube and incubated 

for 1 min at 95oC and 16 hours, 20 min at 60oC. The hybridized probes were ligated by adding the 

ligase-65 mix solution consisting of 3 µl of ligase 65 buffer A, 3 µl of ligase 65 buffer B, 25 µl of 

water and 1 µl of ligase-65 for each sample. Before adding the ligation mix, the temperature of 

the reaction was reduced to 54oC and finally the reaction was incubated for 15 min at 54oC and 

5 min at 98oC. In the last step, the ligated probes were amplified using PCR. Here, 7.5 µl of water, 

2 µl of SALSA primers and 0.5 µl SALSA polymerase were pipetted in each sample and mixed well. 

The PCR reaction had the following temperature cycles; 35 x [30 sec at 95oC, 30 sec at 60oC, 60 

sec at 72oC] 20 min at 72oC. The amplified MLPA products were electrophoresed on 4% high 

resolution agarose gel, stained with 0.5µg/ml ethidium bromide and visualized using ultra violet 

(UV) light.  

 
2.3.8 PCR to confirm viruses 

All samples that were clearly positive or suspected to be positive under MLPA for ABPV, KBV, 

IAPV, CBPV, ALPV, SBV, SBPV and LSV were confirmed by reverse transcription (RT)-PCR. For 
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BQCV and DWV randomly selected samples from the two AEZs of Uganda that were positive 

under MLPA were analyzed by RT-PCR. The fragment of the genome of each of these 10 honeybee 

viruses (ABPV, KBV, IAPV, CBPV, BQCV, DWV, ALPV, SBV, SBPV and LSV) previously investigated 

using MLPA was amplified for virus confirmation using specific primers shown in Table 2.1. All 

reactions were carried out in 25 µl PCR solution containing 0.5 µM of each primer, 2.5 µl of 10x 

buffer, 0.25mM of dNTP, 2.5 mM MgCl2, 0.2 U HotStarTaq Plus DNA Polymerase, and 1 µl of 

cDNA.  

 

The cDNA was synthesized using random primers in the Thermo Scientific RevertAid First Strand 

cDNA Synthesis Kit following Chemurot et al., (2016a). This process started with 5 µl RNA in a 

volume of 12 µl that was denatured for 5 min at 65oC and paused at 25oC. Then 4 µl of 5x reaction 

buffer, 1 µl of RiboLock RNase inhibitor (20 U/ µl), 2 µl of 10 mM dNTP mix and 1 µl of reverse 

transcriptase (200 U/ µl) were added to make a total volume of 20 µl. The solution was mixed 

gently and centrifuged before incubation for 5 min at 25oC and 60 min at 42oC. The reaction was 

finally terminated by heating to 70oC for 5 min and the product used directly as a template for 

the different PCR. The PCR conditions for the different reactions are shown in Table 2.1.  Aliquots 

of 10 μl of the amplified products were separated using 1.5% agarose gel stained with 0.5 µg/ml 

ethidium bromide and visualized under UV light.  

 

2.3.9 Establishing association between Varroa mites and honeybee viruses 

In order to establish the association between honeybee viruses and Varroa mites, samples of 20 

mites from virus positive colonies were screened for three viruses; DWV, BQCV and ABPV. First, 

RNA was extracted from individual whole mites using the QIAamp® viral RNA kit following the 

manufacturer’s protocols and descriptions in Chemurot et al., (2016a). Briefly, 560 µl of AVL 

containing carrier RNA was pipetted into 1.5 ml Eppendorf tubes. Then, 140 µl of the Varroa 

sample (prepared by slicing each mite using a sterile blade and adding 200 µl PBS and 

centrifuging) was added and briefly vortexed and centrifuged. Then, 560 µl of absolute ethanol 

was added and the mixture vortexed and centrifuged. After this, 630 µl of the mixture was 
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pipetted into QIAamp columns in 2 ml tubes. Column washing and RNA elution was done as 

described in section 2.3.6. The RNA was kept at -80oC until used for cDNA synthesis.  

 

The cDNA was synthesized using random primers in a similar manner as it was done for the bees 

in section 2.3.8. To confirm the negative results, V. destructor actin primers described by Locke 

et al. (2012) were used in a reaction programed as follows: 95oC for 5 min, 94oC for 30 sec, 58oC 

for 30 sec, 72oC for 30 sec (35 cycles) and final extension 72oC for 10 min. Ten μl of the amplified 

products were separated using 1.5% agarose gel stained with 0.5 µg/ml ethidium bromide and 

visualized under UV light. 

 

2.3.10 Data analyses 

To obtain information on landscape and management factors that influence honeybee 

parasite/pathogen infestation levels, data on environmental factors (elevation, distances to 

potential water sources, nature of apiary slope and season) and management factors (agro-

ecological zones, farming intensity and height of hive placement) were recorded. The GPS was 

used to record elevation and to estimate distances to potential water sources from apiaries. 

Apiary slopes were categorized into three groups (steep, gentle and flat) and recorded in the two 

AEZs sampled. Farming intensity around each apiary was observed and categorized as follows: 

protected area; new farmland; old farmland with tree plantation; and old farmlands without tree 

plantations. In each apiary, the height (meters) from ground to the bottom of the beehive was 

measured using a tape measure for every sampled hive. During fieldwork, colony performance 

was estimated by making observations and or measurements on the strength and productivity 

of each sampled colony. The following indicators of honeybee colony performance were used: 

number of top-bars/frames with honey, brood, pollen, covered with bees and honey yield in 

kilograms that was harvested. 

 

Data were analyzed using SPSS statistical program (version 16). To compare the number of 

honeybee viruses in honeybee colonies in different land use areas, Kruskal-Wallis tests were 

performed. When significant results were found, post hoc analysis with Mann-Whitney tests 
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were used to compare pairs of categories. Mann-Whitney test was also used to compare the 

number of honeybee viruses in honeybee colonies in the two AEZs of Uganda, two seasons (dry 

and wet) and in inspected and uninspected apiaries. Spearman’s rank correlations were 

conducted to establish the relationships between the number of honeybee viruses (viral 

diversity) and the following: altitude, distances to the nearest water sources, height of beehive 

placement, Varroa mite infestation levels and colony performance. All tests were two tailed. 

 

Regression models were built modeling the presence of honeybee viruses, Nosema and Varroa 

as a function of landscape and human factors that were thought to potentially impact on 

honeybee health. Because of the severe skewedness and the high amount of zero’s in the 

outcome variables, a combination of ordinary and logistic regression were used as suggested by 

Fletcher et al. (2005). The goal was to build models indicating whether honeybee 

pathogens/parasites (viruses, Nosema and Varroa) were present or not, and another model 

indicating the viral diversity, number of Nosema spores and number of Varroa when they were 

present. From the original datasets, two datasets were created. One indicating whether 

pathogens/parasites were present or not, and the other showing the infestation levels when they 

were present. Dummies were created for the categorical variables. Forward stepwise logistic 

regression was used to model the presence of these pathogens and parasites. To model the viral 

diversity and infestation levels of Nosema and Varroa when these pathogens and parasites were 

present, forward stepwise linear regression was conducted. To fulfill all underlying assumptions 

of the models, square root transformations of the outcome variables were done in each case. A 

Bonferroni correction of all critical values was done to correct for type I errors. 

 
2.4 Results  

2.4.1 Infestation rates of honeybee viruses 

Five honeybee viruses; DWV, ABPV, BQCV, SBV and LSV were detected in the investigated 

Ugandan honeybee colonies (Figure 2.4). Results showed that these five honeybee viruses were 

detected in both the eastern and western highlands AEZs of Uganda. The findings further showed 

that overall, 51.9% of the investigated samples were infected with DWV, 20% with BQCV, 9.5% 
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with ABPV, 2.5% with LSV and 2.5% with SBV. No samples tested positive for KBV, IAPV, CBPV, 

ALPV, SBPV and BSRV. The highest percentage of infections was found for DWV, which occurred 

in 29 out of 32 apiaries sampled. For BQCV, ABPV, SBV and LSV, infections were recorded in 23, 

13, 7 and 7 out of the 32 apiaries sampled respectively. Moreover, in feral colonies, four 

honeybee viruses similar to those in managed colonies were detected. These were DWV (25%), 

ABPV (25%), BQCV (25%) and SBV (12.5%). Honeybees with deformed wings (Figure 2.5), a known 

symptom of DWV, were observed when brood was collected from the Lake Victoria AEZ of 

Uganda and incubated to allow young bees to emerge (personal observation). 

 

2.4.2 Single and multiple viral infections 

Table 2.2 shows the infection rates of single and multiple honeybee viruses in the eastern and 

western highlands AEZs of Uganda. Multiple honeybee viruses were more prevalent during the 

wet season compared to the dry season in managed colonies in both AEZs. Also, multiple viruses 

were detected in feral colonies during the dry season (Table 2.2). There were no significant 

differences in the number of honeybee viral infections (viral diversity) among honeybee colonies 

from the two AEZs (U = 9796, Z = -0.251, P = 0.802). However, the median number of viral 

infections in honeybee colonies located in areas of different land uses significantly varied (2 (df 

= 2) = 6.671, P = 0.036). Apiaries located in Eucalyptus plantations had significantly higher median 

numbers of viruses (viral diversity) compared to protected areas (U = 35.0, Z = -2.215, P = 0.027) 

and farmlands (U = 617.0, Z = -2.075, P = 0.038). On the other hand, the median number of 

honeybee viral infections did not differ significantly between colonies located in farmlands and 

protected areas; U = 1855.0, Z = -1.510, P = 0.131).  
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Figure 2.4: Infection rates of honeybee viruses in colonies: eastern (A) and western highland (B) 

agro-ecological zones of Uganda during the dry and wet seasons. 
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Table 2.1: Summary of the primers used for honeybee virus confirmations and cycling conditions. 

Virus/gene Primer Primer sequence Fragment length (bp) Annealing temp MgCl2/25µl Reference 

ABPV ABPV-F6548 TCATACCTGCCGATCAAG  197 48°C  1µl de Miranda et al., 2011  

KIABPV-B6707 CTGAATAATACTGTGCGTATC 

KBV KBV-F6639 CCATACCTGCTGATAACC  200 

KIABPV-B6707 CTGAATAATACTGTGCGTATC 

IAPV IAPV-F6627 CCATGCCTGGCGATTCAC  203 

KIABPV-B6707 CTGAATAATACTGTGCGTATC 

CBPV  CBPV 1-1 TCAGACACCGAATCTGATTATG 570 55°C  1µl Blanchard et al., 2008  

CBPV 1-2 ACTACTAGAAACTCGTCGCTTCG 

BQCV BQCV-TOP-F GGAGATGTATGCGCTTTATCGAG 316 63°C  1µl Topley et al., 2005 

BQCV-TOP-R CACCAACCGCATAATAGCGATT 

DWV DWV-F1425 CGTCGGCCTATCAAAG 417 50°C 0.5µl Forsgren et al., 2009  

DWV-B1806 CTTTTCTAATTCAACTTCACC 

ALPV ALP-Br-F-2936 AACGTCGTATGCTACGATGAACTCG 464 60°C 1µl Runckel et al., 2011  

ALP-Br-R-3400 GGGTTAAATTCAATTCCAGTACCACGG 

SBV SBV-VP1b-F GCACGTTTAATTGGGGATCA 693 51.5°C 1µl Singh et al., 2010  

SBV-VP1b-R CAGGTTGTCCCTTACCTCCA 

SBV SB14 f  AAT GGT GCG GTG GAC TAT GG  597 55°C  1µl Grabensteiner & Ritter, 
2001  SB15 r  TGA TAC AGA GCG GCT CGA CA  

SBPV SBPV GATTTGCGGAATCGTAATATTGTTTG 868 58°C  1µl de Miranda et al., 2010  

SBPV ACCAGTTAGTACACTCCTGGTAACTTCG 

LSV LSVdeg-F GCCWCGRYTGTTGGTYCCCCC 578 60°C  1µl Ravoet et al., 2013  

LSVdeg-R GAGGTGGCGGCGCSAGATAAAGT 

Vd-actin Vd-actin-qF CGACGGTCAGGTCATCAC 243 58°C 0.5 µl Locke et al., 2012 

Vd-actin-qB GTTGAGGGAGCCAAAGAGG 
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Table 2.2: Seasonal infection levels (%) of uninfected, single and multiple honeybee viruses in 
honeybee colonies from the east and western highlands AEZs of Uganda. 

Number  
of viruses 

East Western highlands Feral colonies 
Dry (n=8) Dry (n=90) Wet (n=62) Dry (n=86) Wet (n=45) 

0 42.2 29.0 34.9 44.4 37.5 
1 43.3 43.5 51.2 24.4 37.5 
2 13.3 17.7 14.0 26.7 12.5 
3 1.1 9.7 0.0 4.4 12.5 

 

2.4.3 Relationship between viral infections and Varroa infestation levels 

Varroa mite infestation levels were generally low but varied from 1.52±0.30 to 3.79±0.54 mites 

per 300 bees in the two AEZs (Table 2.3). The number of viruses detected in honeybee colonies 

was positively correlated with Varroa mite infestation levels (rho = 0.212, n = 283, P < 0.01). 

However, no targeted viruses (DWV, BQCV and ABPV) were detected in the sampled mites from 

virus positive colonies. 

 

 

Figure 2.5: Honeybees with deformed wings, a symptom for DWV. 
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Table 2.3: Mean Varroa mite infestation levels in the two AEZs of Uganda. 

AEZ Mean mites per 300 bees  

Dry season Wet season 

East 3.79 ± 0.54 2.58 ± 0.78 

Western highlands 2.25 ± 0.49 1.52 ± 0.30 

 

2.4.4 Relationship between viral infections and environmental factors 

Evaluation of the potential effects of environmental and human factors on honeybee viral 

diversity indicate that season and apiary location in relation to human activities influenced viral 

diversity in honeybee colonies (Table 2.4). The number of viral infections in honeybee colonies 

was significantly higher during the wet season compared to the dry season (U = 8305.5, Z = -

2.045, P < 0.05). The number of viral infections in honeybee colonies was significantly negatively 

correlated with altitude of the apiary (rho = -0.162, n = 283, P < 0.01).  

 
Table 2.4: Effects of environmental and human factors on viral diversity in honeybee colonies. 

Factor Viral diversity 

Season Dry 0.8±0.7 (176)* 

Wet 1.1±0.9 (109)* 

Apiary location Eucalyptus 1.4±0.5 (8)* 

Farmland 0.9±0.8 (257)*a 

Protected area 0.6±0.9 (18)*a 

Nature of apiary 
slope 

Flat 1.0±0.8 (98) 

Gentle 0.8±0.8 (132) 

Steep 0.7±0.8 (52) 

Agro-ecological zone Eastern 0.9±0.8 (152) 

Western highlands 0.8±0.8 (131) 
Numbers indicate means and standard deviations, figures in brackets indicate the sample size (n), the * outside the bracket indicates there are 

significant differences in the mean viral diversity within the factor under consideration while the *a indicates no significant differences 

 

Beehives that were sampled were placed at heights ranging from 0 – 4.5 m. The number of viral 

infections in honeybee colonies was significantly negatively correlated with the height of hive 

placement (rho = -0.152, n = 283, P = 0.011). Also, the number of viral infections in honeybee 

colonies was significantly positively correlated with the distances to potential water sources (rho 

= 0.140, n = 283, P = 0.019). Potential permanent water sources for honeybees were located 

between 10 – 2,000 m from the apiaries. The number of honeybee virus infections in colonies 
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under different apiary management practices did not differ significantly (2 (df = 3) = 1.767, P = 

0.622). Furthermore, the number of honeybee virus infections in colonies in apiaries with varying 

farming intensities did not differ significantly (2 (df = 3) = 4.467, P = 0.215). 

 

A binary logistic regression model developed to predict honeybee viral presence gave a 

Nagelkerke R2 of 0.138 implying that the variables included in the model were able to explain 

13.8% variance in the model.  Although, the Chi Square 30.522 and df 6 was significant (P < 0.001), 

the findings indicates that the nature of apiary slope and apiary location among the explanatory 

variables (elevation, season, apiary location, farming intensity, apiary slope and apiary 

management) included in the model significantly predicted viral presence in the study sites. 

Change of apiary slope from flat to gentle and steep decreased chances of finding honeybee 

viruses by 0.513 times (Table 2.5). Generally, it is concluded that this binary logistic regression 

model does not have adequate integrity and hence not appropriate for predicting viral presence 

in honeybee colonies in the two AEZs of Uganda. 

 

Table 2.5: Logistic regression model predicting presence of honeybee viruses in the study sites. 

Factor B S.E. Exp(B) P 

Elevation 0.001 0.001 1.000 0.746 
Apiary location -1.387 0.497 0.250 0.005 
Nature of apiary slope -0.667 0.230 0.513 0.004 
Agro-ecological zone 0.213 0.282 1.237 0.452 
Season 0.311 0.274 1.365 0.2572 
Distance to potential water source 0.001 0.000 1.001 0.074 
Constant 3.447 1.323 31.428 0.009 

X2 = 30.522, df = 6, P < 0.001; Nagelkerke R2 = 0.138 (Italicized variable is statistically significant) 

 

The linear regression model developed explains 8.8 % of the variance in viral diversity. Factors 

included in the model were: apiary location, nature of apiary slope, distance to potential water 

sources, altitude, season, agro-ecological zone and height of beehive placement. All together 

these factors significantly explained viral diversity (F(9,271) = 4.009, P < 0.01). However, only 

apiary slope, season and height of beehive placement significantly predicted viral diversity (Table 

2.6).  
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2.4.5 Relationship between viral infections and colony performance 

Comparison of honeybee colony performance indicates significant seasonal differences in the 

number of combs with honey, brood and pollen in each of the two AEZs of Uganda with the 

colonies showing better performance during the dry season in all cases except for pollen in the 

western highlands AEZ. The number of combs full with adult bees was only statistically different 

in the western highlands with the dry season colonies having more combs full with bees. Honey 

yield was generally very low in the colonies harvested during the study. Notably, average honey 

yield in the top-bar beehives was 3.4 ± 4.1 kg/hive (n = 20) in the eastern and 2.9 ± 3.8 kg/hive (n 

= 17) in the western highland AEZs of Uganda (Table 2.7). The number of combs with honey in 

the beehives was significantly negatively correlated with the number of multiple honeybee viral 

infections (Table 2.8). Other honeybee colony performance indicators were not significantly 

correlated with the number of multiple honeybee viral infections.  

 

Table 2.6: Linear regression model predicting viral diversity infestation levels in the study sites. 

Factor Beta T P 

(Constant)   1.44 0.151 

Apiary location (Eucalyptus) 0.086 1.353 0.177 
Apiary location (protected area) 0 0.007 0.994 
Nature of apiary slope (flat) 0.312 2.928 0.004 
Nature of apiary slope (gentle) 0.121 1.448 0.149 
Elevation 0.136 1.434 0.153 
Distance to potential water source 0.099 1.462 0.145 
Season -0.198 -3.35 0.001 

Agro-ecological zone 0.033 0.475 0.635 
Beehive placement height -0.236 -2.97 0.003 

 

Table 2.7: Seasonal variation in colony performance indicators in the two AEZs of Uganda. 
AEZ Season Honey combs Brood combs Pollen combs Combs with 

bees  
Honey yield 
(kg) 

Eastern Dry 2.1±3.0 (77)* 1.7±1.6 (72)* 0.4±0.4 (58)* 12.2±6.5 (89) 3.4 ± 4.1 (20) 
Wet 1.6±3.2 (54)* 0.9±2.6 (37)* 0.03±0.1 (41)* 11.1±3.6 (49) - 

Western Dry 2.9±2.3 (54)* 1.5±1.5 (46)* 0.4±0.3 (49)* 13.7±6.8 (86)* 2.9 ± 3.8 (17) 
Wet 0.5±0.7 (32)* 0.6±0.9 (15)* 0.8±2.9 (23)* 11.4±4.2 (45)* - 

Numbers indicate the means and standard deviations, figures in brackets indicate the sample size (n), while the * indicates there are significant 

seasonal differences in the particular AEZ. 
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Table 2.8: Correlation values of the number of honeybee viruses detected with honeybee 
colony performance indicators. 
Colony productivity/strength 
indicator 

Spearman’s rho N P 

Combs with honeybees  0.013 266 0.838 
Combs with honey -0.191 215 0.005 
Combs with brood -0.072 169 0.354 
Combs with pollen -0.036 170 0.641 
Honey yield (kg) 0.108 37 0.525 

 

2.5 Discussion 

The huge loss of honeybee colonies in Europe and North America in recent years drew attention 

leading to the discovery of links of some honeybee viruses to colony losses. However, no major 

colony losses have been reported in Africa despite at least nine honeybee viruses being 

documented (Pirk et al., 2015). This paper represents the second molecular evidence of the 

presence of honeybee viruses in Ugandan apiaries after Kajobe et al. (2011). It documents four 

newly detected honeybee viruses in Uganda (DWV, ABPV, SBV and LSV) and shows presence of 

multiple viral infections in honeybee colonies. Compared to the infection rates detected in this 

study, the corresponding results from the previous study (Kajobe et al., 2011) show that the 

infection rate of BQCV was relatively higher. However, like in the previous study (Kajobe et al., 

2011), the infection rates per AEZ reveals slightly higher BQCV infestation levels in the western 

highlands compared to the eastern AEZ.   

 

At regional level (East Africa), only three honeybee viruses (BQCV, DWV and ABPV) had been 

reported before this study (Kajobe et al., 2009, 2011; Muli et al., 2014). The current study reports 

two additional honeybee viruses (SBV and LSV) but at low infection rates. Moreover, the sampling 

in this study was limited to two out of ten AEZs in Uganda. Therefore, there is need to sample 

other AEZs in the country and region. Also, further studies are necessary to understand the 

effects of these honeybee viruses on African honeybees at individual and colony levels especially 

since some of these honeybee viruses are associated with honeybee losses in Europe and North 

America. 
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Reports on honeybee viruses in African honeybees (e.g. Adjlane et al., 2015; Haddad et al., 2015), 

were based on reverse transcription-PCR (RT-PCR) on honeybee samples. This technique and the 

MLPA used in the current study are recommended for screening honeybee viral pathogens (de 

Miranda et al., 2013). However, in terms of sensitivity, the qPCR is the most sensitive technique 

since it can detect as low as 300 copies and is followed by RT-PCR. On the other hand, the MLPA 

can detect up to 1000 copies of the target in a sample but has the advantage of being able to 

detect infections in degraded RNA (De Smet et al., 2012) and hence is recommended if proper 

sample storage is difficult as was the case in this study.  

 

The infestation rates of the DWV was highest among all honeybee viruses detected in the two 

AEZs of Uganda. DWV infestation rate in this study is higher than that reported in other African 

countries like Kenya (Muli et al., 2014), Algeria (Loucif-Ayad et al., 2013; Adjlane et al., 2015), 

Egypt, Libya, Morocco, Sudan and Tunisia (Haddad et al., 2015) but lower than that reported in 

European countries like Croatia (Gajger et al., 2014), France (Tentcheva et al., 2004), Belgium 

(Ravoet et al., 2013) and South American countries like Uruguay (Antúnez et al., 2006). One 

possible reason for the lower infection rates of honeybee viruses in the study areas could be 

because Varroa ecto-parasitic vector for honeybee viruses arrived relatively recently in Uganda 

(Fazier et al., 2010; Kasangaki et al., 2015; Chemurot et al., 2016a).  

 

Like the study in Kenya (Muli et al., 2014), our data shows that Varroa infestation levels were 

positively correlated with the number of viral infections suggesting that Varroa is vectoring the 

viruses. However, unlike in Algeria, a North African country where honeybee viruses were 

detected in Varroa mites (Adjlane et al., 2015), in this study no honeybee viruses were detected 

in the sampled Varroa mites. Therefore the interaction between Varroa and honeybee viruses in 

the Ugandan population of A. mellifera obviously constitutes a unique case since honeybee 

viruses that were detected in honeybees were absent in mites.  

 

One hypothesis for the unique interaction between honeybee viruses and Varroa is that Varroa 

mites were recently introduction in Uganda compared to other regions of the world. This 
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hypothesis is supported by the fact that Varroa mites were not detected in Ugandan honeybee 

colonies in 2009 (Fazier et al., 2010) but recently (Kasangaki et al., 2015; Chemurot et al., 2016a). 

Alternatively, since African honeybees have greater resistance to some honeybee viruses like 

DWV and BQCV (Hamiduzzaman et al., 2015), the variation could be due to honeybee genetic 

traits that reduce viral levels in honeybees to levels that considerably lower their chances of being 

transmited by the mites. However, a study by Di Prisco et al. (2016) showed that mutualistic 

symbiosis between Varroa infestation and DWV infections lead to reciprocal stimulation that 

escalates negative effects on the immunity and health of honeybees. As such, long-term 

honeybee health monitoring programs are needed to keep track of the interactions between 

African honeybee races, these viral pathogens and Varroa mite vectors. 

 

Several honeybee viruses like KBV, IAPV, CBPV, ALPV, SBPV and BSRV were not detected in the 

study sites. Therefore, future honeybee health monitoring programs in Uganda should 

concentrate on the five viruses (BQCV, DWV, ABPV, SBV and LSV) which were detected if 

resources are limited. However, even if SBPV was not detected, its inclusion in future honeybee 

health monitoring programs should be considered since its infection rate is known to be naturally 

low (de Miranda et al., 2010).  

 

Four honeybee viruses were detected in feral colonies in the two AEZs of Uganda although 

relatively fewer feral colonies were sampled. Beekeepers in Uganda currently rely on natural 

honeybee colonies to populate their beehives (Chemurot, 2011), therefore honeybee pathogens 

and parasites can easily spread from feral to managed colonies. On the other hand, since 

absconding and swarming are common among African honeybee races (Hansen & Brodsgaard, 

1997), pathogens and parasites may also spread from managed to feral colonies. On this regard, 

feral colonies may act as reservoirs of honeybee parasites and pathogens which may have far 

reaching consequences on the health of managed honeybees if they succumb to these potential 

threats.  

 



Chapter 2 

The numbers of multiple viral infections in honeybee colonies during the wet and dry season 

differed significantly. Also, the height of hive placement and the distances to potential water 

sources were negatively and positively correlated with the number of viral infections in honeybee 

colonies respectively. Furthermore, there was a correlation between elevation and number of 

viral infections in honeybee colonies. These results suggest that environmental factors (climate 

and landscape ecology) might be involved in mediating the transmission and the honeybee-virus 

interaction. Beehives placed higher have reduced contact with formerly diseased bees that die 

and are thrown out of the hive. At lower elevations, other honeybee virus reservoir hosts could 

be mediating honeybee viral transmission. 

 

Transmission of honeybee viruses could be occurring at water sources and floral sources where 

honeybees from different colonies interact with each other in addition to interacting with other 

non-Apis hymenopteran species. A study by Singh et al. (2010) showed non—Apis hymenopteran 

species including Bombus impatiens, B. vagans, B. ternarius, Xylocopa virginica, Ceratina dupla, 

Augochlora pura, Andrena sp., Vespula vulgaris, Polistes metricus, P. fuscatus and Bembix sp. 

collected from flowering plants near apiaries were positive for several honeybee viruses including 

DWV, BQCV, SBV, KBV and IAPV and concluded that pollen is a route for inter-taxa virus 

transmission since viruses were detected in pollen. Based on the positive correlation between 

number of viruses and distances to potential water sources, we hypothesize that water sources 

might also act as virus transmission points. The effect of environmental factors on honeybee viral 

transmission needs to be explored in detail.  

 

The productivity of honeybee colonies sampled in the two AEZs of Uganda was low but 

comparable to the findings from Adjumani district in the West Nile AEZ of Uganda (Chemurot, 

2011). This low productivity per beehive may be attributed to several factors including; limited 

honeybee forage, lack of proper colony management to prevent swarming  (e.g. no 

supplementary feeding), too many colonies in the apiaries (carrying capacity) and weakening 

influences such as pests, diseases and pesticides (Hussein, 2000). Importantly, in this study the 

number of viral infections was negatively correlated to the number of combs with honey 
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suggesting possible negative effects of viral infections on the general performance of Ugandan 

honeybee colonies. Other honeybee colony strength and productivity indicators were not 

significantly correlated with the number of viral infections implying that the extent of the effects 

of these viruses could still be low. This could be because there can be a time-lag before newly 

introduced pathogens cause considerable negative effects. A study in Hawai by Martin et al. 

(2012) showed that the Varroa mite arrival increased the prevalence of DWV, from ~10 to 100% 

within honeybee populations, which was accompanied by an increase in viral titer and a massive 

reduction in DWV diversity, leading to the predominance of a single DWV strain. Although African 

honeybees have greater resistance to some honeybee viruses like DWV and BQCV 

(Hamiduzzaman et al., 2015), the arrival of Varroa could result in the selection for DWV variants 

that are more virulent and might lead to honeybee health problems in future.  

 

This study suggests that four new honeybee viral pathogens (DWV, ABPV, SBV and LSV) could 

have recently invaded honeybee populations in Uganda. The findings suggest that increased 

honeybee viral diversity decreases honeybee colony productivity in Uganda, at least in terms of 

number of combs with honey. Interestingly, numbers of honeybee virus infections were 

correlated to elevation, height of hive placement and distances to potential water sources, 

suggesting that environmental factors modulate honeybee viral infection rates. Based on these 

findings, beekeepers should be encouraged to provide water in their apiaries during the dry 

season in order to avoid long distances that might increase chances of viral pathogen 

transmission. In addition, beekeepers are advised to place their beehives at recommended 

heights (1m for top-bar, 1.5m for traditional (log) for ease of manipulation and to avoid possible 

pathogen infestation. Finally, the exact ways through which environmental and management 

factors could be involved in honeybee viral interactions should be investigated. 
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Chapter 3 

3.1 Abstract 

Honeybee brood is attacked by bacterial and fungal pathogens which are often lethal and can 

cause losses to beekeepers. Here, the presence of three honeybee brood pathogens: 

Paenibacillus larvae, Mellisococcus plutonius and Ascosphaera apis in the eastern and western 

highland agro-ecological zones of Uganda was investigated. This was done by collecting brood 

and honey samples from 67 honeybee colonies in two sampling occasions and cultivating them 

for these pathogens. Also, 8 honeys imported and locally retailed in Uganda were sampled and 

cultivated for P. larvae. One honeybee colony without clinical symptoms for American foulbrood 

in an apiary located in a protected area of the western highlands agro-ecological zone of Uganda 

was found positive for P. larvae. The strain of this P. larvae was genotyped and found to be ERIC 

I. In order to compare its virulence with P. larvae reference strains, in vitro infection experiments 

were conducted with carniolan honeybee larvae from the research laboratory at Ghent 

University, Belgium. The results showed that the virulence of the P. larvae strain found in Uganda 

was at least equally high as in the reference strain. The epidemiological implication of the 

presence of P. larvae in a protected area is discussed. 

 

Key words: Apis mellifera; Brood pathogens; East Africa; Honeybee diseases; Prevalence 

 

3.2 Introduction  

Honeybee brood is attacked by a range of pathogens including: bacteria, viruses, protozoa, fungi 

and parasitic mites. However, the American foulbrood (AFB) and European foulbrood (EFB) 

caused by Paenibacillus larvae and Mellisococcus plutonius respectively are two of the most 

economically important brood bacterial diseases of honeybees (Forsgren, 2010). These bacterial 

pathogens pose a significant threat to the health of honeybee colonies and to the beekeeping 

industry because they cause considerable losses to beekeepers (Genersch, 2010b). Both AFB and 

EFB are widely distributed and potentially lethal to infected colonies (Forsgren, 2010).  

 
Although AFB and EFB have a worldwide distribution (Forsgren, 2010; Budge et al., 2010; 

Genersch, 2010a; Morrissey et al., 2014), few confirmations of these diseases have been made 

in Africa. Therefore, there is still doubt as to whether they are present in extensive parts of Sub 
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Saharan Africa. AFB has been confirmed in Egypt (Masry et al., 2014), Guinea Bissau (Hansen et 

al., 2003) and South Africa (Human et al., 2011). In addition, spores of AFB have been detected 

in honey originating from Algeria (Adjlane et al., 2014), Libya, Morocco (Hussein, 2001) and 

Tunisia (Hussein, 2001; Fries & Raina, 2003; Hamdi et al., 2013). On the other hand, EFB has been 

reported in Algeria, Guinea-Bissau, Libya, Morocco, Senegal, Tanzania and Tunisia among African 

countries (Hussein, 2001; Ellis & Munn, 2005).  

 

Honeybee larvae get infected by P. larvae when they are fed by nurse bees on feed contaminated 

with spores of P. larvae. Young larvae (< 36 h after hatching) are most susceptible to infection 

(Genersch, 2010b). Typical clinical symptoms of AFB are the brown, viscous larval remains 

forming a ropy thread when drawn out with a matchstick (de Graaf et al., 2006). The decaying 

brood desiccates into hard scales, tightly adhering to the walls of the cells, consisting of millions 

of bacterial spores which are the infectious stage of the pathogen (Genersch et al., 2006). AFB is 

spread both horizontally and vertically (Fries et al., 2006; Lindstrom et al., 2008). However, the 

most predominant route of spread is via the horizontal routes by both humans and bees. 

Horizontal transmission of AFB occurs when humans move contaminated honey or beekeeping 

equipment (Genersch, 2010b). In addition, drifting of adult bees between colonies and robbing 

behavior of foragers can lead to horizontal spread of AFB (Lindstrom et al., 2008).  

 

For EFB infection to occur, bacterial cells of M. plutonius are ingested by larvae with 

contaminated food and multiply within the midgut of the honeybee larva (Forsgren, 2010). EFB 

affects mainly unsealed brood, killing honeybee larvae usually when they are 4 – 5 days old 

(Forsgren, 2010). Symptoms of EFB include: dead larvae displaced in its cell or twisted around 

the walls or stretched out lengthways; larval color changes from pearly white to yellow, then 

brown and finally, when they decompose, grayish black; sunken capping resembling the 

symptoms of AFB and a foul or sour smell (Forsgren, 2010). 

 
Another important honeybee brood disease is chalk-brood caused by Ascosphaera apis, a fungus 

which also affects mainly the larvae of the honeybees. Infection of honeybee colonies by A. apis 
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can cause reduction in colony strength and productivity (Jensen et al., 2013). Chalk-brood disease 

has been reported in African countries including; Algeria, Egypt, Ethiopia, Nigeria, South Africa 

and Tunisia (Hussein, 2001; Ellis & Munn, 2005; Tesfay, 2014; Pirk et al., 2015). However, A. apis 

remains to be investigated in East African countries including Uganda, Kenya, Tanzania, Burundi 

and Rwanda. 

 

Beekeeping is an important activity in many rural areas of Uganda where it is carried out mainly 

using traditional beehives and beekeeping practices (UEPB, 2005; Chemurot, 2011). Beekeepers 

in Uganda majorly target honey production (UEPB, 2005), although beekeeping provides several 

other benefits to people and the environment: production of propolis, beeswax, bee venom, 

pollen and pollination service (Jacobs et al., 2006; Genersch, 2010b). In doing so, honeybees 

contribute to food security, household incomes and biodiversity conservation. However, 

honeybees are threatened by numerous pathogens and parasites which can attack them. The 

most recent honeybee parasite reported in Uganda, is Varroa destructor (Chemurot et al., 

2016a). In order to develop the beekeeping sector, it is essential to design effective honeybee 

pest and disease management plans. This requires accurate and adequate information on the 

distribution, infestation levels and impacts of honeybee pathogens in the country.  

 

In this study, brood and honey samples were collected from honeybee colonies in the eastern 

and western highland AEZs of Uganda. Also, 8 honey samples from imported honeys that were 

locally retailed in Uganda were collected and cultivated for P. larvae, M. plutonius and A. apis to 

establish if they could be the source of these pathogens in the country. Here, data showing the 

presence of P. larvae in one honeybee colony without any clinical symptoms of AFB is presented 

and the epidemiological implication of the findings are discussed. 

 
3.3 Materials and methods 

3.3.1 Study area 

This study was conducted in the eastern and western highland AEZs of Uganda. Details of the 

descriptions of these AEZ can be found in Chapter 2. In each AEZ, two districts were purposively 

selected and sampled. In each district, sub-counties known for beekeeping activities were chosen 
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in consultation with beekeeping extension workers. Then lists of beekeepers were obtained from 

the District Production Offices and the apiaries sampled were selected based on altitude and land 

uses. Six colonies were sampled per apiary whenever there were sufficient colonies.  

 

A total of 67 honeybee colonies from 32 apiaries were sampled in two sampling occasions (dry 

and wet seasons) between December 2014 and September 2015 (Table 3.1). Only three 

honeybee colonies were sampled twice (during both seasons) because some colonies had either 

absconded or did not have brood at the time of second sampling. One brood comb from each 

honeybee colony was collected and frozen as soon as it was possible and later analyzed for P. 

larvae, M. plutonius and A. apis in the research laboratory at Ghent University, Belgium. During 

field work, observations on honeybee colony strength and productivity and clinical symptoms of 

AFB, EFB and chalkbrood were made and recorded. In addition, eight samples of honey imported 

and retailed in Uganda were collected directly from supermarkets in Mbale and Kabarole 

districts. 

 
3.3.2 Culturing for P. larvae 

In the laboratory, the culturing of P. larvae was performed according to routine protocols (de 

Graaf et al., 2006). Each brood sample was swabbed using cotton wool swabs (n = 10 cells; 5 on 

either side of the comb using two swabs) and the cotton wool washed in 5 ml Phosphate Buffered 

Saline (PBS). The sample was then heated in a water bath for 15 min at 80oC and 150 µl pipetted 

onto MYPGP agar containing nalixidic (10 µg/ml) and pipemidic (20 µg/ml) acids. The agar was 

left to dry before being incubated at 37oC for four days.  

 

For honey, 5 g of the honey sample was measured in a 15 ml conical tube. Then, 5 ml of PBS was 

added into the honey sample and incubated for 15 minutes at 600C to dissolve the sugar in honey. 

The solution was vortexed for 10 seconds to mix it thoroughly before centrifuging at 3000 rpm 

for 30 minutes to separate debris from honey. The honey liquid was poured out and 150 µl of 

PBS added to the remaining debris. The mixture was vortexed before being incubated at 800C for 

15 minutes. The culturing onto MYPGP agar was done in the same way as was for brood. 
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All agar plates were observed for bacterial growth. Bacterial colonies were observed for 

similarities with P. larvae reference strain (LMG 9820). Suspicious colonies were subjected to 

catalase tests and those which were catalase negative were gram stained and examined at 1000x 

magnification on a microscope. Colonies were confirmed as P. larvae by PCR (Dobbelaere et al., 

2001).  

 

3.3.3 Culturing for M. plutonius 

M. plutonius was cultured on Basal solid agar (BSA) medium according to the protocol described 

in Forsgren et al. (2013). Briefly, each brood sample was swabbed using cotton wool swabs (n = 

10 cells; 5 on either side of the comb using two swabs) and the cotton wool washed in 5 ml PBS. 

Then, 150 µl of the sample was pipetted in basal medium and the plates incubated for 7 days at 

35°C anaerobically. All agar plates were observed for bacterial growth. Bacterial colonies were 

observed for similarities with M. plutonius reference strain. Suspicious colonies were gram 

stained and examined at 1000x magnification on a microscope.  

 
3.3.4 Culturing for A. apis 

In the laboratory, culturing for A. apis was done in yeast-glucose-starch agar (YGPSA) following 

Jensen et al. (2013). This was performed by pipetting 150 µl of the honeybee sample (also used 

for to culture for M. plutonius) into the YGPSA medium and incubating at 34oC for 10 days. The 

plates were observed for fungal growth and colonies were matched with A. apis culture from a 

chalk-brood positive Belgian sample. 

 
3.3.5 PCR for P. larvae 

A colony of the suspected bacterial sample was suspended in 50 µl of distilled water and heated 

to 100°C for 10 min. The sample was then centrifuged at 13,300 rpm for 5 min and 1 µl of the 

supernatant was amplified in a 25 µl PCR mixture containing the following: 10x PCR buffer,  2.5 

mM MgCl2, 50 pmol of each primer (AFB-F: 5'-CTTGTGTTTCTTTCGGGAGACGCCA-3' and AFB-R: 5'-

TCTTAGAGTGCCCACCTCTGCG-3') (Dobbelaere et al., 2001), 400 pmol of each deoxynucleoside 

triphosphate, and 1.25 U of Taq polymerase. The PCR conditions consisted of a 94°C (5  min) step; 

30 cycles of 93°C (1 min), 55°C (1/2 min), and 72°C (1 min); and a final cycle of 72°C (10 min).  As 
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a positive control, P. larvae LMG 9820 was used. The molecular weights of the PCR products were 

compared with those of the Generuler 1kb plus marker on a 1% agarose gel stained with ethidium 

bromide and visualized under UV light.  

 

3.3.6 ERIC genotyping 

ERIC genotyping was performed following the procedures described by Genersch et al. (2006).  

Briefly, the DNA sequences of the primers used for P. larvae DNA fingerprinting were 5’-

ATGTAAGCTCCTGGGGATTCAC-3’ (ERIC1R) and 5’-AAGTAAGTGACTGGGGTGAGCG -3’ (ERIC2). The 

PCR were carried out in final volumes of 25 µl consisting of 1x reaction buffer (Qiagen) and final 

concentrations of 2.5 mM MgCl2, 250 mM dNTPs, 10 mM primer and 0.3 U HotStarTaq 

polymerase (Qiagen). The reaction conditions were: an initial activation step (95oC for 15 min); 

35 cycles at 94oC for 1 min, 53oC for 1 min and 72oC for 2.5 min, followed by a final extension 

step at 72oC for 10 min. A 10 µl sample from the PCR was analyzed on a 0.8% agarose gel. A 

positive control for each ERIC genotype was used (LMG 9820, R 20833, LMG 16252 and LMG 

16247). 

 

3.3.7 Infection assay 

The virulence test was conducted at the Laboratory of Molecular Entomology and Bee Pathology 

(L-MEB), Ghent University following the protocol described by de Graaf et al. (2013) using Apis 

mellifera carnica larvae. Briefly, plates each consisting of 24-wells were incubated at 34°C for 24 

hours. A group of 30 larvae (in 3 wells) was treated with the Ugandan P. larvae isolate, another 

group of 30 larvae was treated with the P. larvae strain BRL 230010. Six (6) wells were left empty 

and filled with 1 ml of distilled water to avoid desiccation. Three hundred (300) µl of the spore-

contaminated larval diet (20 spores of P. larvae/ µl feed) was added into each well of the 

treatment group. Three wells for the negative control group were left and fed on non-spore 

contaminated larval diet during the entire experiment. After 24 hours of infection, larvae were 

transferred to a pre-warmed, fresh normal larval diet (royal jelly, fructose and glucose) plate. The 

grafting tool was decontaminated between each group to avoid reinfection. Every treatment 

group received fresh larval diet every 24 hours and the plates were analyzed each day under a 
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stereo microscope to determine the health status of the larvae. Old feed was removed daily and 

replaced with pre-warmed fresh larval diet. After defecation (day 8), the larvae were transferred 

to pupation plates. The larvae were classified as dead when they stopped breathing (movement 

of tracheal openings stops) and lost body elasticity. The number of dead larvae was recorded 

every day. To determine whether P. larvae infection caused the death of a larva, dead larvae 

were plated out on MYPGP plates. Plates were incubated for three days at 37°C to allow the 

growth of vegetative bacteria. Positive AFB infection was confirmed by growth of P. larvae. 

Further confirmation was provided by performing P. larvae-specific PCR-analysis of colonies 

grown from larval remains.  

 

Data analyses 

Statistical analyses were conducted with the SPSS statistical program (version 16). The Kaplan-

Meier method was used to compare the survival of honeybee larvae in the infection experiment 

(larvae fed on KAS-07 Ugandan P. larvae strain, ERIC I reference strain (BRL 230010) and 

uninfected (control). 

 

3.4 Results 

M. plutonius and A. apis were not detected in all the honeybee brood samples. The presence of 

P. larvae in samples of honeybee brood and honey from the two agro-ecological zones of Uganda 

is shown in Table 3.1. A total of 59 brood samples from the two AEZs of Uganda were analyzed 

during the dry season. During the wet season, 11 brood and 13 honey samples were analyzed. 

No brood sample showed any clinical signs of AFB in the field. None of the honey samples were 

found to be contaminated with P. larvae spores. Of the 59 honeybee brood samples analyzed 

during the dry season, only one (sample KAS-07) (representing 1.7%) was confirmed positive for 

P. larvae. As expected, the PCR amplicon was around 1100-bp (1106-bp) determined based on 

the Generuler 1kb plus marker (Figure 3.1).  
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Table 3.1: Summary of the number of samples analyzed for P. larvae during the two seasons 
and results obtained. 

S/N Source of samples Dry season Wet season 

Brood Honey Brood Honey 

1 Eastern AEZ 23 (0)  - 10 (0) 2 (0) 

2 Western highland AEZ 36 (1)  - 1 (0) 3 (0) 

3 Imported to Uganda  -  -  - 8 (0) 
Figures indicate the number of samples analyzed; those between brackets indicate the P. larvae positive samples found. 

 

 

L= Generuler 1kb plus marker, 1= sample KAS-07, 2 = positive control (LMG 9820), N = negative control. 

Figure 3.1: PCR product image. 

 

ERIC PCR and virulence assay 

The survival analysis using the Kaplan-Meier method on A. mellifera carnica larvae fed on P. 

larvae strain is shown in Figure 3.3. The results gave significant values (Log rank (Mantel-Cox: 

2(df = 2) = 88.56, P < 0.001), Breslow (Generalized Wilcoxon: 2(df = 2) = 51.004, P < 0.001) and 

Tarone-Ware: 2(df = 2) = 67.790, P < 0.001) indicating that there were statistical differences in 

the survival times between treatments. Kaplan-Meier plots show that the uninfected (control) 
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bee larvae survived more than the bee larvae that were infected with both the reference P. larvae 

strain (BRL 230010) and the Ugandan (KAS-07) strain. The survival assay finding confirms that the 

strain obtained is at least equally virulent when compared to BRL 230010, which is an ERIC I 

genotype that was isolated from diseased colonies in the USA (Qin et al., 2006). 

 

 
L= Generuler 1kb plus marker, 1= sample KAS-07 (found strain), 2 = LMG 9820, 3 = R 20833, 4 = LMG 16252, 5 = LMG 16247, N = negative 

control. 

Figure 3.2: ERIC PCR product image. 
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Figure 3.3: Kaplan-Meier survival plot of A. mellifera carnica larvae fed on KAS-07 Ugandan P. 
larvae strain, ERIC I reference strain (BRL 230010) and uninfected (control). 
 

3.5 Discussion 

Several reports on the presence of honeybee brood pathogens in A. mellifera populations in 

different African countries have been published (Hansen et al., 2003; Fries & Raina, 2003; Human 

et al., 2011; Masry et al., 2014; Adjlane et al., 2014). Most of these reports were based on honey 

analyses and not honeybee brood. Moreover, the sampling in most cases was limited to few 

honey samples, which did not permit the workers to detect the low pathogen levels typical of 

persistent inapparent infections. Here, the first survey of the infection rates of honeybee brood 

pathogens in seemingly healthy honeybee colonies from 32 apiaries, in two AEZs of Uganda is 

described. The apiaries sampled varied in altitude from 920 to 2400 m above sea level and 

included farmlands, Eucalyptus plantations and protected areas.  



Chapter 3 

Of the three brood pathogens investigated by culture methods, P. larvae was the only pathogen 

detected in the colonies. In this study, 1.7% of the honeybee colonies sampled during the dry 

season were positive for P. larvae. Being the first finding of P. larvae in Uganda, it was necessary 

to perform ERIC genotyping and virulence tests to compare this strain with reference strains 

found in some western countries. Moreover, as clinical signs were not observed, it was difficult 

to conclude that this strain had any disease causing potential. Also, virulence tests of the P. larvae 

strain found were performed on A. mellifera carnica at the research laboratory of Ghent 

University, Belgium since there were neither facilities nor the required biosafety certificate to 

perform the experiments in Uganda. The results showed that the strain found was an ERIC I with 

at least equally high virulence when compared to BRL 230010 from the USA (Qin et al., 2006). 

 

The infection rate (1.7%) of P. larvae in honeybee colonies and (3.03%) in apiaries recorded in 

this study is comparatively much lower than that reported in some Asian countries e.g. 37.3% in  

honeybee colonies in Pakistan (Anjum et al., 2015), 24.8% in honey samples from Taiwan (Chen 

et al., 2008) and some European countries e.g. 11% in Belgium (de Graaf et al., 2001), 66% in 

France (Mouret et al., 2013) and  5.3-9.8% in Latvian apiaries (Chauzat et al., 2014;  Laurent et 

al., 2015). However, the infection rate of AFB recorded in the study apiaries is in the range of 1-

5.7% in Estonia, 1.5-4.5% in Greece, 1.6-4.7% in Poland, 2% in Sweden, 2.6% in Slovakia, 2.2-2.7% 

in Italy (Chauzat et al., 2014;  Laurent et al., 2015) and 1.6-3.2% in Spain (Garrido-Bailón et al., 

2013). Long term epidemiological studies show that the prevalence levels of AFB vary over time. 

For example, in Uruguay, AFB prevalence levels fluctuated over 12 years after it was first reported 

(Antúnez et al., 2012) suggesting that the infection levels recorded in Ugandan apiaries could 

change over time.  

   

In Africa, AFB has been confirmed in South Africa (Human et al., 2011), Guinea Bissau (Hussein, 

2000; Hansen et al., 2003) and Egypt (Masry et al., 2014). P. larvae has also been detected in 

honey originating from Tunisia (Matheson, 1993; Hussein 2000; Fries & Raina, 2003; Hamdi et al., 

2013), Algeria, Libya and Morocco (Hussein, 2000). Studies on P. larvae in Africa used culture 

techniques mostly on processed honey which normally gets contaminated when brood is heavily 
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infected. This reduces the chances of detecting the pathogen if the infestation level is low. 

Therefore, more sensitive sampling techniques such as collecting honey from combs within the 

brood areas should be used when investigating the presence of P. larvae in Africa.  Despite P. 

larvae and other honeybee parasites like Varroa destructor being reported in Africa (Human et 

al., 2011; Muli et al., 2014; Strauss, et al., 2015; Chemurot et al., 2016a), no major colony losses 

have been reported yet. This could be associated with the higher levels of disease resistance in 

African honeybees (Human et al., 2011). However, such a trait may not persist if pathogens 

accumulate in hives especially with the promotion of frame beehives and honeybee breeding 

programs that do not consider disease resistance. Therefore, efforts should be made to prevent 

loss of the disease resistance in African honeybees. 

 

Behavioral adaptations such as abscondment and swarming among African honeybee races may 

also explain their low levels of parasite infestation (Chemurot et al., 2016a). Two honeybee races, 

Apis mellifera scutellata, and Apis mellifera adonsonii have been confirmed in Uganda (Kasangaki, 

2016). These honeybee races abscond from beehives more frequently when disturbed than other 

races of A. mellifera (Hansen and Brodsgaard, 1997). This behavioral trait could result in 

disinfection in honeybee colonies formally infected by P. larvae (Hansen and Brodsgaard, 1997).  

 

The higher levels of hygienic behavior of African honeybees may also reduce the level of AFB 

infection (Fries and Raina, 2003; Human et al., 2011). In addition, the wax moth which is a very 

common pest in Africa and only affects weak colonies (Strauss et al., 2013) reduces AFB 

infestation levels by removing infected combs (NBU, 2014). The overall implication of this is that 

relatively very low AFB infection levels and extremely rare development of clinical symptoms are 

observed. During this study, wax moth larvae (Figure 3.4) were observed in 80% of the apiaries 

sampled during the wet season. 
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Figure 3.4: Wax-moth larva (red arrow) and the damage it causes on honeybee combs (yellow 
circle). 
   

The P. larvae positive sample in this study was from a colony in a protected area suggesting that 

this pathogen could be present in feral honeybee colonies. Since beekeepers in Uganda rely on 

natural honeybee colonies to populate their beehives (Chemurot, 2011), P. larvae could spread 

from feral to managed colonies. On the other hand, absconding and swarming which are common 

among African honeybee races (Hansen and Brodsgaard, 1997) could also spread this pathogen 

from managed to feral colonies. However, the current predominant use of traditional and top-

bar beehives (Chemurot, 2011) reduces chances of this pathogen accumulating in honeybee 

combs since beekeepers harvest the entire comb.  

 

The results suggest that P. larvae is present in very few honeybee colonies in Uganda. This could 

be due to the beekeeping practices, absconding and swarming behavior of available honeybee 

races. Therefore, the prevailing beekeeping practices such as the use of traditional and top-bar 

beehives should not be drastically changed in order to keep this pathogen in balance and reduce 

potential production losses to beekeepers.  
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4.1 Abstract 

The microsporidian parasites, Nosema apis and Nosema ceranae of honeybees are important 

threats to beekeeping in western countries. In order to provide baseline data and gain some 

insights into the infestation rates and seasonal patterns of microsporidian parasite infections in 

Ugandan honeybees, this study was conducted to: i) identify the Nosema spp. present, ii) 

understand the variation in spore infection levels among honeybee colonies located in areas of 

different land-use types and elevations and iii) determine how infection levels might affect 

honeybee colony strength and productivity. Microscopy and PCR for the detection and 

differentiation of N. ceranae and N. apis were used. The findings indicate that N. apis and N. 

ceranae were present in the sampled study sites. In addition, a newly detected microsporidian 

that is smaller than N. ceranae and has fewer polar filament coils is described. This new parasite 

was found at higher infestation rates compared to the other two known microsporidian parasites 

of honeybees. Nosema spore counts in colonies located in protected areas were significantly 

lower than those in farmlands (P < 0.01) and Eucalyptus plantations (P < 0.01). However, Nosema 

spore counts were not significantly different in colonies in Eucalyptus plantations and in 

farmlands (P = 0.825). The results also showed that there was a significant negative correlation 

between Nosema spore count and height of honeybee nest (beehive) from ground in both the 

eastern (rho = -0.333, n = 92, P = 0.001) and western highland agro-ecological zone (rho = -0.364, 

n = 86, P = 0.001) during the dry season. In the wet season, there was no correlation between 

spore count and height of beehives from ground (eastern: rho = 0.194, n =79, P = 0.087; western 

highland: rho = 0.142, n = 115, P = 0.129). Finally, the number of honeybee frames/top bars with 

honeybees and amount of honey which was harvested were negatively correlated with Nosema 

spore counts, suggesting that Nosema is negatively affecting honeybee colony performance in 

Uganda. 

 

Key words: Honeybee; Colony productivity; Landscape factors; Microsporidia; Nosema species; 

Uganda 
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4.2 Introduction 

Two species of Microsporidia are currently known to infect the honeybee, Apis mellifera 

worldwide. These are Nosema apis which was first reported over 100 years ago (Zander, 1909) 

and the relatively recent Nosema ceranae (Higes et al., 2006; Huang et al., 2007; Traver et al., 

2012). Both N. apis and N. ceranae are obligate intracellular parasites of the midgut of 

honeybees. They have been reported in all continents where beekeeping with A. mellifera occurs 

(e.g. in Africa by Fries et al., 2003; Higes et al., 2009 and Muli et al., 2014; in Europe by Higes et 

al., 2006 and Paxton et al., 2007; in North America by Chen et al., 2008; in South America by 

Calderón et al., 2008; in Asia by Chen et al., 2009). The two species of Nosema cannot clearly be 

distinguished under the light microscope. However, under the electron microscope, N. ceranae 

has 20 - 23 polar filament coils while N. apis has more than 30 polar filament coils (Fries et al., 

1996). 

 

Infection of honeybees by N. apis and N. ceranae has negative impacts that vary with the 

geographical location and the Nosema species involved. Damage to colonies can include 

suppression of the honeybee immune system (Antúnez et al., 2009), shortening of worker bee 

lifespan (Mayack & Naug, 2009), decline in colony strength and productivity (Botías et al., 2013), 

queen supersedure (Alaux et al., 2011), increased winter losses and colony collapse (Higes et al., 

2008). Such impacts demonstrate Nosema spp. as a threat to honeybees and hence the need to 

monitor its presence.  

 

Beekeeping is an important economic activity in the rural areas of Uganda providing a 

supplementary source of income for rural households. However, limited information is available 

on honeybee pests and pathogens in the country that can be used to plan for their management. 

In order to provide baseline data and gain some insights into the infestation rates and seasonal 

patterns of microsporidian parasite infestation in Ugandan honeybees, this study was conducted 

to: i) identify the Nosema spp. present, ii) understand the variation in spore infection levels 

among honeybee colonies located in areas of different land-use types and elevations and iii) 

determine how this variation affects honeybee colony performance. Particularly, the interest was 
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to address this question uniquely through an altitudinal and land-use type stratification of study 

sites. Different detection methods for Nosema spp. including microscopy and a PCR for 

differentiation of N. ceranae and N. apis were used. Since several samples with visible 

microsporidia-like spores under the light microscope turned negative for the known N. ceranae 

and N. apis, Nosematidae family primers were used which gave positive results. Transmission 

electron microscopy (TEM) on the spores, amplification and sequencing of the entire 16S SSU 

rRNA were performed. The data confirmed the discovery of a new species of microsporidia that 

was found at high infestation rates in the study sites in Uganda. In addition, N. apis and N. ceranae 

were also present in the sampled study sites.  

 

4.3 Materials and methods 

4.3.1 Study area 

This study was conducted in the eastern and western highlands AEZs of Uganda. Beekeepers in 

these two AEZs, practice beekeeping activities in agricultural and non-agricultural areas 

(protected areas) which allow evaluation of the potential influence of land use type on the health 

of honeybees. Details of the description of the study sites can be found in Chapter 2.  

 

4.3.2 Field data and sample collection 

Samples of worker honeybees were collected from the edges inside the beehives. A total of 175 

colonies were sampled during the dry season and 195 during the wet season from the eastern 

and western highlands AEZs of Uganda. Honeybee samples were preserved in 95% ethanol and 

refrigerated as soon as possible until transported to Ghent University, Laboratory of Molecular 

Entomology and Bee Pathology for analyses. During fieldwork, the geographical coordinates and 

altitude of each apiary site were recorded using a GPS receiver. Also, height of beehives sampled 

from the ground, distance to the nearest water source, land uses and apiary management 

activities around the apiary were recorded. Detailed description of the field data and sample 

collection are provided in Chapter 2. 
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4.3.3 Colony strength and productivity 

Because of the high level of defensiveness of African honeybees, the subjective methods of 

estimating colony strength were used as described by Delaplane et al. (2013). The adult bee 

population and amount of brood per colony were estimated in the two sampling moments. This 

was achieved by analyzing the top bars/frames covered by bees and quantifying the number of 

brood combs. Also the number of combs with pollen and honey were estimated whenever it was 

possible. The honey production in colonies that were harvested during the harvesting season 

(January-February 2015) were analyzed separately by weighing all the comb honey from each 

colony.  

 

4.3.4 Detecting and counting Nosema spores 

To determine the degree of infection of Nosema spp. a haemocytometer was used as described 

in the BEEBOOK (Fries et al., 2013). To detect and evaluate Nosema spp. infestation in the 

colonies, samples of bees (n = 10 bees per sample) were soaked in 10 ml PBS in 15 ml tubes and 

electronically agitated in a cold room (4oC) for one day to wash off the ethanol. The PBS was 

changed the following day and the sample agitated in the cold room for another day to rehydrate 

the honeybees. Then, the honeybees were transferred into 5 ml self-standing tubes containing 5 

ml PBS, about 0.25 ml zirconia beads and 5 metal beads. The honeybees were crushed in 5 rounds 

lasting 5 minutes each in the Bullet Blender Storm 5®/ VISUM IDPBW at maximum speed.  

 

A volume of 20 µl of the sample was pipetted onto a haemocytometer (Bürker) and observations 

made at 400x magnification. When Nosema spores were noticed, counts were made in the 

counting chamber and estimates of the total number of spores per honeybee computed using 

the following formula modified from (OIE, 2013): 

Number of spores per bee 

=
number of spores counted ×  500

surface area counted (mm2)  ×  depth of chamber (mm) ×  dilution
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For this study: 

 Number of spores counted refers to the actual spore count made on the counting 

chamber. 

 Surface area counted is the number of mini-squares where counting was done multiplied 

by the area of each mini-square (0.0025 mm2). 

 The depth of the chamber was 0.1 mm. 

 Dilution in this case was 1 since no dilutions were made.  

 The 500 was a constant (since 10 bees were suspended in 5 ml PBS, each bee was 

suspended in 500 µl PBS). 

 

4.3.5 PCR to confirm species of Nosema 

Total RNA was extracted from 10 bees per sample using QIAamp® viral RNA kit following the 

manufacturer’s guidelines. Details of the steps followed in RNA extraction, storage and cDNA 

synthesis are shown in Chapter 2.  

 

A singleplex PCR method was used to confirm the Nosema spp. present because it is currently 

the most sensitive method for discerning each species (Carletto et al., 2013). The PCR primers 

QNoUF2 (5’ – GGA TTG TGC GGC TTA ATT TGA –3’) and QNo.AR: (5’ – CCT CAG ATC ATA TCC TCG 

CAG –3’) were used to amplify a 77 bp fragment of N. apis 16s rRNA. On the other hand, for N. 

ceranae, the same forward primer QNoUF2 (5’ – GGA TTG TGC GGC TTA ATT TGA –3’) was used 

but the reverse primer was replaced with QNoCR (5’ – ACC ACT ATT ATC ATT CTC AAA C – 3’) 

targeting a 97 bp fragment of 16s rRNA. For each PCR reaction, 2.5 µl of 10X buffer, 1 µl of dNTP 

mix, 1.25 µl forward primer, 1.25 µl reverse primer, 0.25 µl of Taq polymerase and 13.75 µl of 

water were prepared (mixed thoroughly) and pipetted into PCR tubes. Then 5 µl of cDNA was 

added and the mixture centrifuged briefly before being placed in the PCR machine. The following 

temperature cycle for amplifying Nosema spp. DNA was used: 5 min at 94oC, denaturation for 30 

sec at 94oC, annealing 30 sec at 60oC, extension for 30 sec at 72oC (35 cycles) and final extension 

for 3 min at 72oC. The amplified PCR products were electrophoresed for 60 min at 100 volts 
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through 1.5% agarose TBE gel in standard TBE buffer, stained with ethidium bromide and 

visualized using UV illumination.  

 

Some samples with visible spores under the light microscope gave negative PCR results for both 

N. apis and N. ceranae. Therefore, a set of Nosematidae family primers designed to amplify a 240 

bp region of the 16S rRNA gene (Nos-F: 5’ – TAT GCC GAC GAT GTG ATA TG -3’ and Nos-R: 5’ – 

CAC AGC ATC CAT TGA AAA CG -3’) corresponding to nucleotides 644 to 883 (Higes et al., 2006; 

Fernández et al., 2012) were used. For each sample, the reaction consisted of 2.5 µl of 10X buffer, 

1 µl of dNTP mix, 1.25 µl forward primer (NOS-F), 1.25 µl reverse primer (NOS-R), 0.25 µl of Taq 

polymerase, 13.75 µl of water and 5 µl of cDNA. The parameters of amplification were set as 

follows: 5 min at 95oC, denaturation for 30 sec at 94oC, annealing 30 sec at 52oC, extension for 

30 sec at 72oC (35 cycles) and final extension for 10 min at 72oC. Amplified PCR products were 

electrophoresed for 45 min at 120 volts through 2% agarose TBE gel in standard TBE buffer, 

stained with ethidium bromide, and visualized using UV illumination. Amplicons of three selected 

samples were sequenced. The sequences obtained were edited and alignments performed using 

Clustal-W and compared with those in the GenBank using BLAST.   

 

4.3.6 Transmission electron microscopy (TEM) of spores 

One sample of the honeybee homogenate with observable microsporidia-like spores under the 

light microscope but which was negative for both N. apis and N. ceranae was prepared for TEM. 

For primary fixation, 20 µl of the sample was placed in a fixative containing: 2% formaldehyde 

(FA) (EM-grade), 2.5% glutaraldehyde (GA) (EM-grade), 0.1M cacodylate buffer in a 1.5 ml tube. 

Fixation was gradually conducted by agitating the honeybee sample in the fixative for one hour 

before transferring it to another tube containing the buffer (three hours in total). Post fixation 

was done by putting the sample in reduced 1% OsO4 and keeping it at 4oC in an agitation machine 

for 1 h. The sample was then washed four times with ddH2O at 4oC in a rotating machine before 

being left for 2 h in 1% uracil acetate (in dark) for staining at 4oC. Dehydration was done at 4oC 

for 30 min each in 7%-15%-30%-50%-70% ethanol in a rotating machine. Thereafter, further 

dehydration at 4oC for 30 min each in 95%-100%-100% dried ethanol in a rotating machine was 
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done. Infiltration was conducted at 4oC: 1/3 - 2/3 - 3 x 3/3 propylene oxide for one hour per step 

and at 4 oC: 1/3 – 2/3- 3 x 3/3 Spurr’s resin for 8 h per step. Embedding was done in Spurr’s resin 

and polymerization at 70oC. Light microscopy (LM) sectioning was done by making semi thin 

sections with an ultra-microtome (Leica EM UC6) at 0.5 mm and stained with 1% toluidine blue 

and 2% borax in distilled water. Electron microscopy (EM) sectioning was done by making 

ultrathin sections of gold interference colour made with an ultra-microtome (Leica EM UC6) and 

post-stained in a Leica EM AC20 for 40 min in uracil acetate at 20oC and for 10 min in lead citrate 

at 20oC. 

 

4.3.7 Developing a diagnostic tool for the new Nosema species 

A set of primers (Nos_ssu_18F: 5’-CACCAG GTT GAT TCT GCC-3’ and Nos_ssu_1537r: 5’-TTA TGA 

TCC TGC TAA TGG TTC-3’) designed to amplify the entire 16S rRNA gene of Nosematidae (Dong 

et al., 2010) were used on one sample (also used for TEM in section 4.3.6) with visible spores 

under microscopy but which gave negative results for N. apis and N. ceranae. The PCR program 

was set as follows: 2 min at 95oC, 30 sec at 94oC, 1 min at 50oC, 2 min at 68oC for 35 cycles and 

final extension 10 min at 68oC. The PCR product was purified using the GenJET Gel extraction kit 

#K0691 following the manufacturers’ protocol with slight modifications (elution with 25 µl 

elution buffer instead of 50 µl). The purified PCR product was transformed into a plasmid using 

the TOPO® TA cloning® Kit for sequencing following the manufacturers protocol. The GenJet 

plasmid miniprep kit was used to extract the plasmids and sent for commercial sequencing. The 

sequences obtained were edited and alignments performed using Clustal-W and compared with 

those in the GenBank using BLAST. It was found to be 97% similar to N. apis (U97150.1).  

 

We opted to work with the universal forward primer, QNoUF2 (5’ – GGA TTG TGC GGC TTA ATT 

TGA –3’) which is also used for N. apis and N. ceranae. A reverse primer was developed in the 

most variable region when compared with the known Nosema species. Two possible primers, 

Nos_new_R1    CCT CAA ATA GAA TCA TCG CCG G and Nos_new_R2    CAC TAG AAG TGT CAG TCC 

TAC were selected. The PCR program used was: 15 min at 95oC; 30 sec at 94oC; 30 sec at 60oC; 30 

sec at 72oC: 35 cycles and final extension for 3 min at 72oC. When we conducted trial tests on the 
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developed primers on the new species, N. apis and N. ceranae, the universal forward primer and 

reverse (Nos_new_R2    CAC TAG AAG TGT CAG TCC TAC) were specific for the new microsporidian 

detected in Ugandan honeybees. The amplified PCR products were electrophoresed for 60 min 

at 100 volts through 1.5% agarose TBE gel in standard TBE buffer, stained with ethidium bromide, 

and visualized using UV illumination. All samples collected from Uganda, 21 samples from Greece 

and 96 Belgian samples were analysed using the developed primers to establish the presence of 

the new species.   

 

4.3.8 Construction of the phylogenetic tree using the SSU rRNA gene sequences 

The SSU rRNA gene sequences of 19 microsporidia were aligned and edited using the Clustal-W 

Program. Phylogenetic trees based on the resultant alignments were constructed using the 

Maximum Likelihood method of MEGA7 software (Kumar et al., 2016). In this method, initial 

trees were obtained automatically by applying the Neighbor-Join and BioNJ algorithms to a 

matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) 

approach, and then selecting the topology with superior log likelihood value. All positions 

containing gaps and missing data were eliminated leaving a total of 1030 positions in the final 

dataset.  

 

4.3.9 Infection experiment 

Spores used in this infection experiment were obtained from a honeybee colony in Kasese district 

which had observable microsporidia-like spores under the light microscope but that were PCR 

negative for N. apis and N. ceranae. From this sample, the entire SSU rRNA was amplified, 

sequenced and TEM performed on the homogenate with the results clearly showing that it was 

a microsporidian (sub-sections 4.4.1 and 4.4.2). In order to confirm the viability of spores that 

were extracted from bees preserved in 95% ethanol (December 2014-March 2015) and kept in 

PBS at -20oC (March 2015-July 2016), an infection experiment was conducted. This would also 

generate a new stock of spores for other infection experiments. Before the experiment, the spore 

suspension (1 ml) obtained from grinding 10 bees was filtered using sterile (Faltenfilter 615 ¼) 

filters. The filtrate was purified by centrifugation following Fries et al. (2013). Briefly, the filtrate 
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was centrifuged at 7,200 rpm for five minutes to produce a pellet of spores and the supernatant 

discarded. The pellet was re-suspended in distilled water by vortexing for five seconds and the 

procedure (centrifugation, supernatant discarding and pellet re-suspension) repeated 3 times. 

The following steps were taken during the infection experiment:  

1. Adult bees from colonies which were used in the infection experiment were tested for 

Nosema spp. by collecting 10 bees at the hive entrance, grinding with a mortar and pestle 

and adding distilled water and examining under a light microscope. 

2. Sealed honeybee brood was collected from a Nosema negative colony and incubated at 34oC 

to get newly emerged worker bees. 

3. The young worker bees were starved for 2 hours and fed individually using a micropipette 

with 10 µl of a spore solution containing an estimated 2,500 spores and then kept for 3 hours 

without feeding.  

4. Two 500 ml cages were stocked with 30 bees each (one control and the experiment). 

5. The bees were fed on sucrose solution (50% weight/volume ratio) and Candipolline Gold 

(containing sugar, bee pollen sterilized with gamma rays, milk and egg proteins and vitamins) 

throughout the experiment. 

6. The cages were monitored daily for any deaths and records taken. 

7. On day 4 post infection, three honeybees were dissected and five body parts separated (head, 

thorax, mid-gut, deviscerated abdomen and rectum) and ground using a mortar and pestle. 

The ground parts were mixed with distilled water and examined under the light microscope 

for presence of spores. The hemocytometer was used to estimate the number of spores per 

bee.  

 

4.3.10 Data analyses 

The data were analyzed using SPSS statistical program. To compare the Nosema spore counts in 

honeybee colonies in the three different apiary locations, Kruskal-Wallis test was performed. 

When significant differences were found, post hoc analysis with Mann-Whitney tests were used 

to compare pairs of categories. Mann-Whitney test was also used to compare Nosema spore 

counts in the two AEZs of Uganda, two seasons (dry and wet) and in inspected and uninspected 
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apiaries. Spearman’s rank correlations were conducted to establish the relationships between 

the Nosema spore counts and the following: altitude, height of bee nest/beehive from ground, 

distance of apiary to nearest water source, colony strength and productivity. All tests were two 

tailed. 

 

4.4 Results 

4.4.1 Nosema species present 

The two Nosema spp. that infect honeybees were detected in the study sites. However, several 

samples with visible spores under the light microscope gave negative PCR results for both N. apis 

and N. ceranae. Further PCR analyses of these samples with Nosematidae family primers gave 

positive results. Amplicons (240 bp fragments) of the 3 samples that were sequenced were 95% 

identical to N. apis (FJ789798.1) with 9 base pair differences. To study the phylogenetic 

relationship between the new species and the known microsporidian species, we amplified the 

entire 16S SSU rRNA of the new species. The phylogenetic tree constructed with the obtained 

sequence and the sequences of other related Microsporidia in the GenBank clearly demonstrate 

that it is most closely related to N. apis (Figure 4.1).  

 

4.4.2 Description of the new species  

The transmission electron micrographs showed that the new Nosema spp. is smaller in size 

(length: 2.36 ± 0.14 µm and width: 1.78 ± 0.06 µm (n = 6) and has fewer polar filament coils (10 - 

12) compared to both N. apis and N. ceranae (Figure 4.2 and 4.3; Table 4.1). 

 

The SSU rRNA of the newly detected Nosema spp. consists of 1242 bp nucleotides and the GC 

content is 38.9%. It is between 93 and 97% identical with corresponding regions of the rRNA of 

other Nosema species (N. apis, N. bombi, N. oulemae, N. thomsoni, N. Portugal, N. vespula, N. 

necatrix, N. ceranae). The results also suggest that this isolate may be closely related to N. apis, 

with which it shares 97% identity of the entire SSU rRNA. From the phylogenetic tree (Figure 4.1) 

of the SSU rRNA, the newly detected microsporidian is an isolate of true Nosema and it is closely 

related to N. apis (U97150.1).  
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Figure 4.1: Phylogenetic tree constructed using the Maximum likelihood method showing the 

relationship of the newly detected Nosema species and other related microsporidia: full size 16s 

rRNA. The bootstrap values are indicated at the nodes. The GenBank accession number for each 

sequence is given adjacent to the corresponding species name. The new Nosema spp (indicated 

in the tree as Nos_Uganda) and N. apis to which it is more closely related are encircled together 

in an orange oval. 

 

4.4.3 Development of a diagnostic tool  

In order to study the infestation rate of the different Nosema species we developed a diagnostic 

tool. The laboratory tests on the tool showed that the universal forward primer (for N. apis and 

N. ceranae) QNoUF2 (5’ – GGA TTG TGC GGC TTA ATT TGA –3’) and reverse (Nos_new_R2    CAC 

TAG AAG TGT CAG TCC TAC) were specific for the new microsporidian detected in Ugandan 

honeybees.  
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(Length: 2.36 ± 0.14µm & width: 1.78 ± 0.06 µm (n = 6); Filament coils: 10 - 12) magnification 3000 x. 

Figure 4.2: Electron micrograph of the new Nosema spp. spores. 
 

 
(10 - 12) FC = polar filament coils, W = spore wall) Magnification 20,000 x. 

Figure 4.3: Electron micrographs of the newly detected Nosema spp. spores with filament coils. 

 

4.4.4 Seasonal infestation rates of Nosema spp. 

There was varied infestation rates of Nosema species in colonies in the two AEZs of Uganda 

during the dry and wet seasons. The new Nosema species had higher infestation rates compared 

to N. apis and N. ceranae. Generally, the proportion of samples positive for the new Nosema spp. 

was higher in the dry than in the wet season (Figure 4.4).  
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Mean Nosema spore count in the eastern AEZ of Uganda was highest in the wet season (2800.63 

± 802.75 spores per bee) compared to the dry season (43.69 ± 24.21 spores per bee). In the 

western highlands AEZ of Uganda, the mean spore count was highest during the dry season 

(4247.61 ± 1578.65 spores per bee) compared to the wet season (2960.15 ± 1645.85 spores per 

bee). In both zones, the seasonal spore counts were statistically significant (eastern: Mann-

Whitney U = 1269.5, Z = -7.478, P < 0.01; western highlands: Mann-Whitney U = 3389.0, Z = -

3.942, P < 0.01). 

 

Table 4.1: Comparison of the new Nosema spp. spores with N. apis and N. ceranae. 

Characteristic N. apis N. ceranae New Nosema species 

Spore shape 
and size 

 Oval or rod shaped 
6.0 µm length and 
3.0 µm width (Fries 
et al. 1996; Chen et 
al. 2009) 

 Oval or rod shaped 
4.4±0.41 µm length, 
2.2±0.09 µm width 
(Fries et al. 1996; 
Chen et al. 2009) 

 Oval or rod shaped 
2.36±0.14µm length 
& 1.78±0.06 µm 
width: (n=6) 
(Smaller) 

Nucleus  Dikaryotic nuclei 
present in all 
developmental 
stages (Chen et al. 
2010) 

 Dikaryotic nuclei 
present in all 
developmental 
stages (Chen et al. 
2010) 

 Spores seem 
diplokaryotic 

Polar 
filament 

 Flexible polar 
filament in mature 
spores (Chen et al. 
2010) 

 Flexible polar 
filament in mature 
spores (Chen et al. 
2010) 

 Polar filament seen in 
spores 

Spore Wall  Mature spore with 
thickened wall 
(exospore and 
endospore) (Chen et 
al. 2010) 

 Mature spore with 
thickened wall 
(exospore and 
endospore) (Chen et 
al. 2010) 

 Spores with 
thickened wall 

Polar 
filament coils 

 More than 30 (Fries 
et al. 1989; Chen et 
al. 2009) 

 18-23 (Fries et al. 
1996; Chen et al. 
2009) 

 10-12 (fewer) 

 

4.4.5 Analyses of samples from Greece and Belgium 

In order to establish if the new Nosema species occurs also in Europe, honeybee samples 

collected from Belgium (Ravoet et al., 2013) and 10 regions of Greece (N. Marmaras, Komotini, 

Xanthi, Argos, Katerini, Paliouri, Volos, Kalampaka, Mytilene and Rethymno) (Hatjina et al., 2011) 

that were kept at L-MEB were analyzed for the newly detected Nosema spp. Interestingly, one 
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from Rethymno region of Greece out of twenty one samples from Greece tested positive for the 

newly detected species of Nosema. None of the 96 Belgian samples were positive for the new 

Microsporidia. The PCR amplicon generated on the Greece sample was sequenced and 

phylogenetic analysis conducted based on this sequence and sequences of related microsporidia 

in the GenBank. For the positive sample from Greece, the 240 bp fragment of the SSU rRNA was 

100% identical to the newly detected Nosema sp. in Ugandan honeybees. It is also evident that 

the Nosema positive samples from Greece and Uganda cluster together in the phylogenetic tree 

(Figure 4.5). 

 

Figure 4.4: Nosema infestation rates in the study sites. 

 

4.4.6 Potential factors influencing Nosema infestation levels 

The results of the analyses show that the agro-ecological zone, season, apiary location in relation 

to human activities and nature of apiary slope influenced Nosema spore infestation levels (Table 

4.2). The data indicates that Nosema spore count varied significantly across the three categories 

of apiary locations (2(df = 2) = 18.662, P < 0.01).  There were significantly lower Nosema spore 

counts in colonies located in protected areas compared to those in farmlands (U = 2930.5, Z = -

4.276, P < 0.01) and Eucalyptus plantations (U = 59.5, Z = -3.027, P < 0.01). However, there were 

no significant differences in Nosema spore counts between colonies in Eucalyptus plantations 

and those in farmlands (U = 1422.0, Z = -0.222, P = 0.825). 
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The potential influence of elevation on Nosema indicates that spore count was correlated with 

altitude in some cases but not all. Specifically, there was a significant negative correlation 

between Nosema spore count with elevation in the eastern AEZ during the dry season (rho = -

0.253, n = 91, P = 0.015). However, during the wet season, there was no significant correlation 

between Nosema spore count with altitude (rho = 0.118, n = 79, P = 0.302). In the western 

highland AEZ, the reverse trend was noticed with no correlation between Nosema spore count 

with elevation during the dry season (rho = -0.038, n = 86, P = 0.728) and a significant but positive 

correlation in the wet season (rho = 0.449, n = 115, P < 0.01).   

 

Height of honeybee nest was negatively correlated to Nosema spore counts. Specifically there 

was a significant negative correlation between Nosema spore count with height of honeybee nest 

(beehive) from ground in both the eastern (rho = -0.333, n = 92, P = 0.001) and western highlands 

AEZ (rho = -0.364, n = 86, P = 0.001) during the dry season. In the wet season, there was no 

correlation between spore count with height of beehives from ground (eastern: rho = 0.194, n = 

79, P = 0.087; western highlands: rho = 0.142, n = 115, P = 0.129). 

 
The binary logistic regression model developed to predict microsporidian spore presence gave a 

Nagelkerke R2 of 0.616 implying that the variables included in the model were able to explain 

61.6% variance in the model.  Moreover, since the Chi Square 136.541 and df 7 was significant (P 

< 0.001), the findings indicates that the explanatory variables (elevation, season, apiary location, 

farming intensity, apiary slope and apiary management) included in the model jointly influence 

the likelihood of having Nosema spores in colonies. Of great interest are elevation, apiary slope 

and farming intensity which significantly predicted spore presence (Table 4.3). Increase in 

elevation resulted in decreased chances of finding Nosema spores by 0.995 times while an 

increase in the farming intensity led to increased chances of finding the spores. Generally, it is 

concluded that this binary logistic regression model has some integrity and hence appropriate 

for predicting Nosema spore presence in the two AEZs of Uganda. 
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Table 4.2: Effects of environmental and human factors on Nosema spore infestation levels in 
honeybee colonies. 

Factor Spores/bee 

Season Wet 2074.7±10391.1 (177)* 

Dry 5097.6±18644.6 (111)* 

Apiary location Eucalyptus 634.7±1331.1 (8)* 

Farmland 3511.0±14884.6 (261)* 

Protected area 460.8±1473.7 (18)* 

Nature of apiary 
slope 

Flat 1086.3±1947.4 (100)* 

Gentle 2654.3±11496.3 (134)* 

Steep 8926.4±27194.6 (52)* 

Agro-ecological zone Eastern 1458.7±5297.5 (153)* 

Western highlands 5306.1±19950.8 (133)* 
Numbers indicate means and standard deviations, figures in brackets indicate the sample size (n), the * outside the bracket indicates there are 

significant differences in the mean spore infestation level  

 

The linear regression model developed explains 4.6 % of the variance in Nosema spore infestation 

levels.  In the model, the factors included were: altitude, apiary location, nature of apiary slope, 

agro-ecological zone, season, distances to potential water sources and farming intensity. All 

together, these factors significantly explained Nosema spore infestation levels (F(9,275) = 2.514, 

p < 0.01). However, following the Bonferonni correction of the alpha, no individual factor 

independently could significantly predict spore infestation levels (Table 4.4).  

 

Table 4.3: Logistic regression model predicting presence of Nosema spores in the study sites. 

Factor B S.E. Exp(B) P 

Elevation -0.005 0.001 0.995 0.000 

Apiary location -0.731 0.966 0.481 0.449 

Nature of apiary slope 2.049 0.534 7.757 0.000 

Agro-ecological zone 0.060 0.617 1.062 0.923 

Season 21.819 3199.837 2.992 0.995 
Distance to potential water source -0.001 0.001 0.999 0.012 

Farming intensity 0.856 0.386 2.353 0.027 
Constant -16.323 3199.838 0.000 0.996 

X2 = 136.541, df = 7, P < 0.001; Nagelkerke R2 = 0.616 (Italicized variable is statistically significant) 
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Figure 4.5: Maximum likelihood analysis of new Nosema spp. (sample from Uganda and Greece) 
with other related Microsporidia: 240 bp fragment of 16S rRNA. The GenBank accession number 
for each sequence is given adjacent to the corresponding species name. The new Nosema spp.: 
(indicated in the tree as Nos_Uganda and Nos_Greece) are encircled together in a blue oval.  
 

Table 4.4: Linear regression model predicting Nosema spore infestation levels in the study sites. 

Factor  Beta t P 

(Constant)   2.035 0.043 

Apiary location (Eucalyptus) -0.029 -0.437 0.663 

Apiary location (protected area) -0.018 -0.296 0.767 

Nature of apiary slope (flat) -0.251 -2.444 0.015 

Nature of apiary slope (gentle) -0.146 -1.713 0.088 

Elevation -0.017 -0.199 0.842 

Distance to potential water source -0.01 -0.141 0.888 

Season -0.075 -1.263 0.208 

Agro-ecological zone -0.15 -2.192 0.029 

Farming intensity (old farmland with trees) 0.17 2.433 0.016 
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4.4.7 Effects of Nosema on colony strength and productivity 

The data show that the number of honeybee frames/top bars with honeybees and amount of 

honey which was harvested were negatively correlated with Nosema spore counts (Table 4.5), 

suggesting that Nosema is negatively affecting honeybee colony strength and productivity. The 

evidence of multiplication of this newly detected Nosema sp. on A. mellifera from Uganda is 

shown in Table 4.6. It can be observed that spore counts on the different body parts varied but 

the highest spore count was in the midgut.  

 

Table 4.5: Spearman’s correlation between Nosema spore count with honeybee colony 
strength and productivity indicators. 

Factor Agro-ecological 
zone 

Dry season Wet season 
rho n P rho n P 

Combs with honey Eastern 0.047 77 0.685 0.122 70 0.314 
Western highlands -0.236 54 0.086 0.031 88 0.771 

Combs with brood Eastern 0.058 72 0.63 -0.032 45 0.834 
Western highlands -0.082 46 0.588 0.145 41 0.365 

Combs with pollen Eastern -0.128 58 0.338 -0.034 53 0.807 
Western highlands -0.006 49 0.969 -0.139 49 0.341 

Combs with bees 
  

Eastern 0.055 89 0.61 -0.015 72 0.902 
Western highlands -0.411 86 <0.01** 0.067 107 0.493 

Kg of honey 
harvested 

Both  -0.493 22 0.02**       

** and italics indicates a significant correlation 

 
Table 4.6: Nosema spore count in honeybee body parts after 4 days post infection. 

S/N Honeybee body part Spores/bee 

1 Head 0 
2 Thorax 5,000 
3 Midgut 8,333 
4 Devescerated abdomen 1,667 
5 Rectum 3,333 

(Spores fed per bee = 2,500 spores). 
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4.5 Discussion 

This study is the first documentation of Nosema spp. in Ugandan honeybee colonies. It shows the 

discovery of a new Microsporidian in addition to confirming the presence of N. apis and N. 

ceranae. There are clear differences in the ultra-structural and molecular characteristics of the 

newly detected Nosema species compared to N. apis and N. ceranae, the other described 

honeybee Microsporidian parasites. Spores of the newly detected Nosema species are smaller 

(approximately 2.5 and 1.86 times shorter than N. apis and N. ceranae respectively) under the 

TEM. Also, the polar filament coils are fewer (10 – 12) in the new species compared to 20 - 23 for 

N. ceranae and more than 30 often seen in N. apis (Fries et al., 1996). Based on molecular and 

TEM data, this study confirms that the Microsporidia isolated from Ugandan honeybees are 

indeed a new Nosema species. Previous studies on honeybee microsporidia in Africa could have 

overlooked this new Nosema species because of the relatively small size of its spores compared 

to N. apis and N. ceranae. It seems also reasonable to believe that investigations only based on 

microscopic examinations might have misdiagnosed infections of the new species as N. apis or 

N. ceranae and thus should be revisited to ascertain the actual species involved. We could show 

that this newly detected Nosema species is present in Greece but absent in Belgian honeybee 

samples. 

 

Nosema infestation rates of the new microsporidian were quite high compared to N. apis and N. 

ceranae although the spore counts were always relatively low in Ugandan honeybee colonies. 

This suggests that the new microsporidian is endemic in Ugandan honeybee colonies and that 

the local honeybees might be able to maintain the infestation levels low. The exact mechanisms 

how honeybees cope with this and other pathogens should be further investigated. Spore counts 

in honeybee colonies in apiaries located in Eucalyptus plantations and farmlands were 

significantly higher than those in protected areas. The high Nosema spore count in honeybees in 

farmlands and Eucalyptus plantations may be associated with nutritional deficiencies of 

honeybee forage around such apiaries and their surroundings. This is in agreement with findings 

in a study by Invernizzi et al. (2011) where infestation levels of N. ceranae were high when 

colonies were kept under Eucalyptus grandis plantations and were attributed to nutritional 
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deficits during periods of Eucalyptus flowering. The nutritional deficiencies provide adequate 

conditions for the multiplication of Nosema spores. Results presented here suggest that 

protected areas which are normally less degraded compared to farmlands and plantation forests 

offer a variety of forage options that meet the nutritional needs of the honeybees in a manner 

that does not favour Nosema parasite multiplication.  

 

Although Mendoza et al. (2012) showed that protein supplementation in honeybee colonies 

causes increased Nosema infections without significant effects on bee health, no protein 

supplements were provided by beekeepers in the studied apiaries. Furthermore, laboratory and 

field experiments have shown that Nosema infections increase significantly in bees from 

pesticide-treated hives compared to bees from pesticide-untreated hives (Pettis et al., 2012). 

Moreover, in farmlands and Eucalyptus plantations, farmers are more likely to use pesticides to 

protect their crops from pests unlike in protected areas.  

 

N. apis has been linked to BQCV outbreaks (Higes et al., 2007) because it infects the midgut of 

adult honeybees (Fries, 1988) and increases the susceptibility of the alimentary canal to BQCV 

infections (Chen and Siede, 2007). The detection of microsporidian parasites and BQCV which 

was reported much earlier (Kajobe et al., 2011) highlight the potential honeybee health threats 

in the country that require monitoring and effective management. In the meantime, since 

microsporidian parasitized bees fed with the polyfloral pollen live longer than bees fed with 

monofloral pollens (Di Pasquale et al., 2013), beekeepers and government should maintain semi-

natural conditions in beekeeping zones to avoid reduction in diverse nutritional resources for the 

bees. 

 

Nosema spore count was negatively correlated with honeybee colony productivity, suggesting 

that increase in the number of spores resulted in a decline in honey yield. This finding is in 

agreement with other reports (Antúnez et al., 2009; Mayack & Naug, 2009; Botías et al., 2013) 

on the impacts of Nosema spp. on honeybee colonies. Infections of honeybees by Nosema 

parasite shortens the lifespan of worker bees (Mayack & Naug, 2009) and lowers the strength 
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and productivity of colonies (Botías et al., 2013). In addition, N. ceranae infection significantly 

suppresses honeybee immune responses (Antúnez et al., 2009). This finding indicates that 

although the African honeybee has been famed for its high levels of tolerance to most pathogens, 

the pressures like natural habitat loss can make them susceptible.  

 

The detection of the new microsporidian in Ugandan honeybees and in samples of bees from 

Greece emphasizes the need for control in movement of honeybee colonies to avoid the 

dispersion of this microsporidian through the exchange of beekeeping material between 

beekeepers. Finally, confirmation of the specific tissues parasitized and epidemiological studies 

on this new Microsporidian of honeybees are necessary to increase our knowledge of the factors 

involved in the transmission and survival of this microsporidian.  
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5.1 Abstract 

Varroa mites are ecto-parasites of honeybees and are a threat to beekeeping. In this study, the 

haplotype of Varroa mites was identified and potential factors that influence their infestation 

rates in the eastern and western highlands AEZs of Uganda evaluated. This was done by collecting 

samples of adult worker bees between December 2014 and September 2015 in two sampling 

moments. Samples of bees were screened for Varroa using the ethanol wash method and the 

mites were identified by molecular techniques. All DNA sequences obtained from sampled mite 

populations in the two AEZs were 100% identical to the Korean haplotype (AF106899). Mean 

mite infestation rates in the apiaries was 40% and 53% for the western and eastern zones 

respectively during the first sampling. Over the second sampling, mean mite infestation rates 

increased considerably in the western (59%) but not in the eastern (51%) zone. Varroa mite 

infestation levels in the eastern zone was significantly higher than that in the western highlands 

AEZ during the first sampling (P = 0.02). Factors that were associated with Varroa mite infestation 

levels include altitude, nature of apiary slope and apiary management practices during the first 

sampling. The results further showed that Varroa mites were spreading from lower to higher 

elevations. Feral colonies were also infested with Varroa mites at infestation levels not 

significantly different from those in managed colonies. Colony productivity and strength were 

not correlated to mite infestation levels. We recommend a long-term Varroa mite monitoring 

strategy in areas of varying landscape and land use factors for a clear understanding of possible 

changes in mite infestation levels among African honeybees for informed decision making. 

 

Key words: Apis mellifera/ ecto-parasite infestation levels/ mite prevalence/ Varroa destructor 

 

5.2 Introduction 

Honeybee health is an important theme in apiculture because honeybees (Apis mellifera) play an 

important role in the pollination of both agricultural crops and wild plants (Ghazoul 2005; Melin 

et al., 2014). By doing so, honeybees contribute to food security and biodiversity conservation. 

Honeybees provide a direct source of income to beekeepers through sale of hive products and 

beekeeping is potentially a poverty alleviation tool in many developing countries (Jacobs et al.,  
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2006). Due to their importance, honeybee colony losses in Europe and North America drew 

attention (Martin, 2001; Moritz et al., 2010; Paxton, 2010; Le Conte et al., 2010; Cornman et al., 

2012; van Dooremalen et al., 2013) leading to the discovery among others of the influence of 

parasites like Varroa destructor (Anderson & Trueman, 2000) in colony collapses (Le Conte et al., 

2010; Dainat et al., 2012). 

  

V. destructor is an ecto-parasite of honeybees that is a big threat to the beekeeping industry. V. 

destructor originated from Asia where its natural host is Apis cerana (Rosenkranz et al., 2010) 

and has since crossed host to A. mellifera and spread all over the world (Fazier et al., 2010; 

Dietemann et al., 2013; Strauss et al., 2013; Muli et al., 2014). In Europe and North America, V. 

destructor is a contributing factor for colony collapses (Shen et al., 2005; Dainat et al., 2012). This 

is attributed to the mites weakening the honeybee colonies by sucking the hemolymph (Martin, 

2001; Martin & Medina, 2004; Rosenkranz et al., 2010) and spreading viruses (Bowen-Walker et 

al.,  1999; Shen et al., 2005).  

 

In 2009, samples of honeybees collected from Kenya and Tanzania were positive for V. destructor 

(Fazier et al., 2010) but not from Uganda. In 2011, Varroa mites were confirmed in Uganda and 

have been reported countrywide (Kasangaki et al., 2015) but it is unknown exactly when Varroa 

mites arrived in Uganda. In order to plan for better management of Varroa mites, it is essential 

to identify the mite haplotypes present as they may differ in virulence and gather information on 

their epizootiology. Currently, little information is available on V. destructor infestation rates in 

Uganda.  

 

Infestation of honeybee colonies by Varroa mites and their impacts vary with honeybee heritable 

traits and behavioural adaptations (Rosenkranz, 1999; Buchler et al., 2010; Calderón et al., 2010; 

Rinderer et al., 2010; Emsen et al., 2012). Also, Varroa mite infestation levels are related to 

landscape factors such as elevation (Muli et al., 2014; Mumbi et al., 2014). Given the varying 

altitude, land uses and the common practice in Uganda of relying on natural swarms to populate 

hives, it is important to investigate the association between mite infestation levels and landscape 
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factors and management. Therefore, this study was conducted in two AEZs of Uganda that are 

spatially separated by about 546 km but are comparable in rainfall amounts, altitude and land 

uses. The aim was to determine if V. destructor infestation levels differed between the two AEZs 

and to identify factors that may be associated with the levels of infestation.  

 

5.3 Materials and methods 

5.3.1 Study area 

This study was conducted in two AEZs namely; the eastern and western highlands of Uganda 

described in Chapter 2.  

 

5.3.2 Data collection  

A total of 170 honeybee colonies from 32 apiaries and 7 feral honeybee colonies in the two AEZs 

were sampled during the dry season. During the second sampling (wet season), 195 honeybee 

colonies were sampled. The details on data collection can be found in Chapter 2. 

 

5.3.3 Estimating colony strength and productivity  

For each selected honeybee colony, colony strength was estimated by counting top-bars or 

frames covered by honeybees and combs with brood. Counts of frames/top-bars were to the 

level of quarter full. Colony productivity was estimated by counting top-bars or frames with 

honey and pollen. In some honeybee colonies, comb honey was harvested and weighed. Details 

of the methods can be found in Chapter 2. 

 

5.3.4 Evaluating mite infestation levels 

Mite infestation levels on adult honeybees were determined using the ethanol-wash method 

described in Chapter 2.  

 

5.3.4 Varroa haplotype identification 

Varroa mite haplotyping was performed using RNA samples that were available for other 

purposes (i.e. virus analyses; data shown in Chapter 2), which was technically feasible because 
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mtDNA of the Varroa mite is entirely devoid of introns (Evans & Lopez, 2002). RNA was extracted 

from whole mite using the QIAamp® viral RNA kit following the manufacturer’s protocols and 

used to synthesize cDNA using random primers in the Thermo Scientific RevertAid First Strand 

cDNA Synthesis Kit as described in Chapter 2.  

 

A 458 DNA base-pair fragment of Varroa mtDNA COXI corresponding to sites Co1F.F and Co1N.R 

(Evans & Lopez, 2002) was amplified for mite haplotype identification (Anderson & Trueman, 

2000) using COXI/COXIR primers (COXI: 5’-GG(A/G) GG(A/T) GA(C/T) CC(A/T) AAT (C/T) T(A/T) 

TAT CAAC  -3’ and COXI-R: 5’-CCT GT(A/T) A(A/T)A ATA GCA AAT AC -3’) (Navajas et al., 2010). 

Reactions were carried out in 25 µl of PCR solution containing 0.5 µM of each primer, 2.5 µl of 

10X buffer, 0.25mM of dNTP, 2.5 mM MgCl2, 0.2 U HotStarTaq Plus DNA Polymerase, and 5 µl of 

cDNA. The following method for amplifying Varroa spp. DNA described by Dietemann et al. 

(2013) was used: 5 min at 94 °C, followed by 35 cycles of 30 s at 94 °C, 30 s at 51 °C and 1 min at 

72 °C and final extension 10 min at 72 °C. Amplicons of 9 randomly selected samples from the 

two agro-ecological zones were sequenced. The sequences obtained were edited and alignments 

performed using Clustal-W. Thereafter, sequences were compared with those in the GenBank 

using BLAST.   

 

5.3.5 Data analyses 

The data were analyzed using SPSS statistical program. To compare the infestation levels of 

Varroa in honeybee colonies in different nest types and in the three different apiary slope 

categories, Kruskal-Wallis tests were performed. The same test was used to compare mite 

infestation levels in apiaries with different human activities. When significant results were found, 

post hoc analysis with Mann-Whitney tests were used to compare pairs of categories. Mann-

Whitney test was also used to compare the infestation levels of mites in the two AEZs, two 

seasons (dry and wet) and in inspected and uninspected apiaries. Spearman’s rank correlations 

were conducted to establish the relationships between the infestation levels of mites and the 

following: altitude, height of bee nest/beehive from ground, distance of apiary to nearest water 

source, colony strength and productivity. All tests were two tailed. Regression models were built 
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modeling the presence of Varroa as a function of landscape and human factors as described in 

chapter 2, sub-section 2.3.10. 

 

5.4 Results 

5.4.1 Seasonal infestation rates of Varroa mites 

Varroa mites (Figure 5.1) were present in both the eastern and western highlands AEZs of Uganda 

during the dry and wet seasons. Mean infestation rates in apiaries during the dry season were 

40% in the western and 53% in the eastern AEZs respectively. During the wet season, the mean 

mite infestation rates in apiaries increased considerably in the western highlands AEZ (59%) but 

not in the eastern AEZ (51%). These infestation rates did not differ significantly between seasons 

(U = 15694.5, Z = -1.743, n = 372, P = 0.08). However, Varroa mite infestation rates varied 

significantly along the altitudinal gradient during the first sampling (dry season) in both the 

eastern AEZ (U = 754.5, Z = -2.211, n = 91, P = 0.03) and western highlands AEZ (U = 650.5, Z = -

2.067, n = 86, P = 0.04). During the second sampling (wet season), there were no significant 

differences in the infestation rates of mites along the altitudinal gradients in both zones. Varroa 

mite infestation levels were low during both the dry (mean infestation levels: eastern 3.79 ± 0.54 

mites/300 bees, western highlands 2.25 ± 0.49 mites/300 bees) and wet seasons (mean 

infestation levels: eastern 2.50 ± 0.63 mites/300 bees, western highlands 2.02 ± 0.29 mites/300 

bees). However, there were significant differences in mean mite infestation levels in colonies in 

the two zones during the dry season. Specifically, colonies in the eastern AEZ had a higher 

infestation level of mites compared to those in the western highlands AEZ during the first 

sampling (dry season) (U = 3195, Z = -2.292, n = 177, P = 0.02). During the wet season, mite 

infestation levels did not differ significantly in the two AEZs (U = 4522, Z = -0.162, n = 195, P = 

0.87). 

 

5.4.2 Varroa haplotype 

For all the 9 analyzed mite samples from the two AEZs of Uganda, the COI sequence between 

primer sites Co1F.F and Co1N.R (Evans & Lopez 2002) were 100% identical to the South Korean 

haplotype of Varroa destructor (GenBank entry AF106899). 
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Figure 5.1: Adult Varroa mites on a bee (A) and magnified (B). 
 

5.4.3 Potential influence of landscape and apiary management factors on Varroa mite 

infestation levels 

Analyses of the potential effects of environmental and human factors on Varroa mite infestation 

in honeybee colonies shows that the nature of apiary slope influenced mite infestation levels 

(Table 5.1). The mean ranks of mite infestation levels were significantly different among apiaries 

in the different apiary slopes (2(df = 2) = 18.074, P < 0.01) with the steep slopes having 

significantly lower mean ranks compared to the flat and gentle slopes during the first sampling 

(dry season) (flat vs. steep; U = 2882.5, Z = -4.168, P < 0.01: gentle vs. steep; U = 3267.5, Z = -

3.739, P < 0.01; flat vs. gentle; U = 11718.5, Z = -0.772, P = 0.44). In the second sampling (wet 

season), no significant differences were observed in mite infestation levels across the different 

apiary slopes.  

 

Varroa mite infestation level was negatively correlated with altitude during the first sampling 

(dry season) in both AEZs (eastern: rho = -0.213, n = 91, P = 0.04 and western: rho = -0.284, n = 

86, P < 0.01). However, by the second sampling (wet season), there was no significant correlation 

between mite infestation levels and altitude in both AEZs (eastern: rho = 0.117, n = 79, P = 0.31 

and western: rho = -0.041, n = 116, P = 0.66).  
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Table 5.1: Effects of environmental and human factors on Varroa mite infestation in honeybee 
colonies. 

Factor Varroa mites/300 bees 

Season Wet 3.0±4.9(177) 

Dry 2.1±4.8 (110) 

Apiary location Eucalyptus 4.2±4.6 (8) 

Farmland 2.6±4.9 (261) 

Protected area 2.9±4.8 (18)  

Nature of apiary 
slope 

Flat 3.2±5.1 (100)*a 

Gentle 2.9±5.3 (134)*a 

Steep 0.9±2.1 (52)* 

Agro-ecological zone Eastern 3.3±5.6 (153) 

Western highlands 2.0±3.9 (133) 
Numbers indicate means and standard deviations, figures in brackets indicate the sample size (n), the * outside the bracket indicates there are 

significant differences in the mean Varroa mite infestation level within the factor under consideration while the *a indicates no significant 

differences 

 

Honeybee colonies were sampled from different habitat categories: protected areas, newly 

opened farmlands, old farmlands with small plantation forests and old farmlands without tree 

plantations. The infestation levels of Varroa mites did not vary with the location of the apiary 

(2(df = 3) = 7.488, P = 0.06). Furthermore, the infestation levels of mites in honeybee colonies 

was not correlated to distance to nearest water source and height of beehive from ground 

(Spearman’s rho = -0.050, n = 177, P = 0.51 and Spearman’s rho = -0.023, n = 177, P = 0.74 

respectively).  

 

Beekeepers in the two AEZs of Uganda used five different beehive types (Traditional, Johnson’s, 

Kenyan top-bar, Tanzanian top-bar and Langstroth beehive types). Seven feral honeybee colonies 

were also identified by beekeepers and these were sampled. A comparison of Varroa mite 

infestation levels in the different nest types shows that honeybee nest type did not have any 

influence (2(df = 5) = 9.733, P = 0.08). Honeybee colonies in hives that were inspected had 

significantly higher mean ranks of mite infestation levels compared to those that were not 

inspected during the first sampling (U = 2881, Z = -2.871, n = 177, P < 0.01). However, during the 

second sampling, there were no significant differences in mean ranks of mite infestation levels 

between inspected and uninspected colonies (U = 24015.5, Z = -1.936, n = 195, P = 0.05). 
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A binary logistic regression model developed to predict mite presence gave a Nagelkerke R2 of 

0.079 implying that the variables included in the model were able to explain 7.9% variance in the 

model. This was considered low; moreover the Chi Square 9.439, df 8 was not significant (P = 

0.31) indicating that all explanatory variables included in the model jointly did not influence the 

likelihood of having Varroa mites in colonies. However, the nature of apiary slope significantly 

predicted mite presence (Table 5.2). Change of apiary slope from flat to gentle and steep 

decreased chances of finding Varroa mites by 0.497 times. Generally, it is concluded that this 

binary logistic regression model does not have adequate integrity and hence not appropriate for 

predicting Varroa mite presence in the two AEZs of Uganda. 

 

On the other hand, the linear regression model developed explains 5.3 % of the variance in mite 

infestation levels. The following factors were included in the model: altitude, season, farming 

intensity and nature of apiary slope. All together these factors significantly explained mite 

infestation levels (F(7,364) = 3.957, p < 0.01). However, only apiary slope significantly predicted 

mite infestation levels (Table 5.3).  

 

5.4.4 Relationship between colony strength, colony productivity and Varroa mite infestation 

levels. 

The productivity and strength of honeybee colonies was not correlated to Varroa mite infestation 

levels (Table 5.4). Specifically, number of frames/bars with bees, honey, brood, pollen combs and 

honey yield in kilograms from hives harvested were not correlated with Varroa mite infestation 

levels.  
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Table 5.2: Logistic regression model predicting presence of Varroa mites in the study sites. 

Variable B S.E. Exp (B) P 

Agro-ecological zone -0.132 0.234 0.876 0.57 

Elevation 0.000 0.000 1.000 0.85 

Farming intensity 0.254 0.126 1.289 0.04 

Season 0.379 0.218 1.461 0.08 

Apiary slope -0.699 0.203 0.497 <0.01*** 

Apiary management -0.116 0.217 0.890 0.59 

Constant 0.080 0.854 1.084 0.93 
X2 = 9.439, df = 8, P = 0.31 (Hosmer and Lemeshow Test); Nagelkerke R2 = 0.079 (Italicized variable is statistically significant) 

 

Table 5.3: Linear regression model predicting infestation levels of Varroa mites in the study 
sites. 

Factor Beta t P 

(Constant)  2.327 0.02 

Elevation (altitude) -0.057 -0.820 0.41 

Season (dry) -0.052 -1.027 0.31 

Farming intensity (protected area) 0.034 0.635 0.53 

Farming intensity (new farmland) 0.136 2.533 0.01 

Farming intensity  (old farmland with trees -0.050 -0.917 0.36 

Apiary slope (flat) -0.281 -3.105 <0.01*** 

Apiary slope (gentle) -0.256 -3.443 <0.01*** 
Italicized variable is statistically significant 

 

Table 5.4: Correlation values of Varroa mite infestation levels with honeybee colony 
productivity and strength indicators. 

Colony productivity/strength 
indicator 

Spearman’s rho n P 

Combs with honeybees  0.062 230 0.35 
Combs with honey 0.014 194 0.85 
Combs with brood 0.021 141 0.80 
Combs with pollen 0.024 149 0.77 
Honey yield (kg) 0.366 27 0.06 
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5.5 Discussion 

The randomly selected Varroa mite samples were similar to the Korean haplotype. This haplotype 

has also been reported in other African countries such as Kenya (Fazier et al., 2010), Nigeria 

(Akinwande et al., 2012), and Madagascar (Rasolofoarivao et al., 2013). This haplotype infests all 

European honeybee races worldwide and African and Africanized honeybee races (Solignac et al., 

2005) and is considered a more virulent haplotype compared to the Japanese haplotype 

(Anderson & Trueman, 2000). Although no honeybee colony losses due to the Varroa mites have 

been reported in Sub Saharan Africa, their presence is a potential threat to the beekeeping sector 

and should be monitored. 

 

Varroa mite infestation rates recorded in this study are comparatively lower than those reported 

in Kenya (Muli et al., 2014), Nigeria (Akinwande et al., 2012), South Africa (Strauss et al., 2014) 

and European countries (Nguyen et al., 2011; Meixner et al., 2014). This could be attributed to 

the mites being relatively new in Uganda. Moreover, the data presented here support the idea 

that mite populations have not yet entirely settled and that a process of spreading is still ongoing 

from the east to the west.  The data shows that mean Varroa mite infestation levels in colonies 

in the eastern AEZ was significantly higher than that in the western highlands AEZ during the first 

sampling. Mite infestation rates increased considerably in the western highlands AEZ from 40 to 

59% between the two sampling moments. This is also supported by historical data: in 2009, 

Varroa was found in Kenya and not in western Uganda (Fazier et al., 2010) whereas in 2011, they 

were found throughout Uganda. In 2009, samples were not collected from eastern Uganda but 

samples from western Kenya tested positive suggesting that the eastern AEZ of Uganda had 

Varroa mite infestation before the western highlands AEZ. 

 

Mite infestation levels reduced with increase in altitude during the first sampling. The nature of 

apiary slope was also correlated with mite infestation levels. These findings conform with reports 

by Mumbi et al. (2014) but contradict Muli et al. (2014) who reported a positive correlation 

between Varroa mite infestation levels and elevation in Kenya. Although the significance of 

altitude on Varroa mite infestation levels in honeybee colonies is not clear, at lower elevation, 
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temperatures are relatively high compared to higher elevations. Such higher temperatures could 

favor mite reproduction and spread (Rosenkranz et al., 2010) because honeybees in such 

conditions are likely to produce brood throughout the year. Altitudinal studies on Ixodes ricinus 

ticks in Switzerland revealed that tick density decreased with increasing altitude and was 

attributed to high moisture which negatively affects tick survival (Gern et al., 2008). But, since 

the life cycle of Varroa mites is closely linked to their hosts and they lack free living stages 

(Moretto & Leonidas, 2003; Rosenkranz et al., 2010), the effects of environmental factors like 

temperature and humidity act indirectly via the host. Such effects may include influencing the 

amount of brood and the hygienic behavior (Rosenkranz et al., 2010). By the second sampling, 

the infestation levels of Varroa mites at different altitudinal levels became similar suggesting, 

mites first infested honeybee colonies at lower altitude areas and were spreading to higher 

altitudes. However, since the mites are still spreading, follow-up studies are needed to monitor 

any changes in mite infestation levels that may occur along altitudinal gradients. 

 

There were no significant seasonal differences in mite infestation levels. These results are similar 

to findings in Nigeria (Akinwande et al., 2012) and in Mexico (Ruíz-Flores et al., 2012) and can be 

attributed to tropical climate in the two AEZs of Uganda. In the tropics where temperatures are 

high throughout the year, honeybee brood is available throughout and hence mite Varroa mite 

populations are likely to be relatively constant.  

 

Honeybee colonies that were inspected had significantly higher Varroa mite infestation levels 

compared to uninspected colonies during the dry season. However, during the wet season, there 

were no significant differences in mite infestation levels between these colonies. The end of the 

dry season (major honey harvesting period) is usually characterized by honeybee colony 

propagation through swarming and abscondments are also high when bees are attacked by pests. 

In both cases, honeybee brood cycle is broken and Varroa load gets reset to low levels in the next 

season, irrespective of the difference observed earlier. This seems to be a successful mechanism 

by which honeybees in Africa get Varroa infestations under control. The same mechanism 

minimizes the potential impact of land use type on Varroa load as seen in this study. In addition, 
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African honeybees have higher levels of resistance to Varroa  mites (Rosenkranz, 1999; Calderón 

et al.,  2010; Pirk et al., 2015) associated with their hygienic behavior (Fazier et al., 2010), 

grooming and short brood post capping periods (Rosenkranz et al., 2010; Calderón et al., 2010) 

which also reduce mite infestation levels. Consequently, Varroa does not affect African honeybee 

colony productivity and strength as confirmed in this study and reports by Muli et al. (2014) and 

Strauss et al. (2015). Although, no honeybee colony losses have been reported in Uganda, there 

are honeybee pests and diseases like the BQCV (Kajobe et al., 2009; 2011) that may work 

alongside Varroa mites to negatively impact on honeybee health.  

 

In this study, no impact of Varroa mites on honeybee colony strength and productivity was 

observed just like other studies in Africa (Dietemann et al., 2009; Muli et al., 2014; Strauss et al., 

2015). Therefore, interventions in the management of Varroa mites in Africa should consider 

allowing the process of natural selection in honeybees. This is because lessons from Europe and 

America indicate that beekeeping has become more labor intensive and expensive due to 

activities related to Varroa mite management (Beetsma, 1994). The arrival of Varroa mites in 

these continents over 30 years ago and the approach taken to develop and use chemicals did not 

completely solve the problem. Mites have been developing resistance against chemicals and 

beekeeping costs have gone up due to Varroa mite control activities. Since African honeybees 

can survive without the need for treatment, it is important to allow natural selection to act 

against genotypes of honeybees that are susceptible to Varroa mites leaving resistant ones. An 

important honeybee pest to learn lessons from is the small-hive beetle which is commonly 

considered a minor pest of African honeybees (Spiewok et al., 2007). It is likely that African 

honeybees adapted to cope with small-hive beetles over time. Natural selection against 

honeybees not tolerant to the small-hive beetles worked over time leading to the emergence of 

predominantly tolerant honeybees currently available in Africa. Therefore, considerations on 

Varroa mite management that allow natural selection should be encouraged and a long-term 

Varroa mite monitoring strategy for a clear understanding of African honeybee interactions with 

this new ecto-parasite is recommended. 
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6.1 General discussion 

6.1.1 Honeybee parasites 

Several honeybee parasites and pathogens have been detected recently in some African 

countries. These include nine honeybee viruses (Pirk et al., 2015), N. apis and N. ceranae (Ellis & 

Munn, 2005; Pirk et al., 2015), V. destructor (Fazier et al., 2010; Muli et al., 2014; Mumbi et al., 

2014; Kasangaki et al., 2015; Chemurot et al., 2016a) and P. larvae (Ellis & Munn, 2005; Pirk et 

al., 2015; Chemurot et al., 2016b) among others. However, some of the parasites and pathogens 

have only been reported in a few countries partly due to limited studies. This study confirmed 

the presence of honeybee pathogens and parasites in Uganda that are possible threats to the 

beekeeping industry if not managed appropriately. Specifically, five honeybee viruses, P. larvae, 

three Nosema spp. and V. destructor were detected in the two AEZs of Uganda.  

 

Importantly, Varroa mites, Nosema spp. and P. larvae were detected at low infestation levels in 

the two AEZs of Uganda. Also for P. larvae, there were no clinical signs in the positive colony. 

Different factors contribute to the observed low parasite/pathogen infestation levels in African 

honeybees. First, behavioral traits such as abscondment and swarming among African honeybee 

races are key factors that explain their low levels of parasite infestation (Hansen and Brodsgaard, 

1997; Chemurot et al., 2016a). This work specifically suggests that abscondment plays an 

important role in reducing Varroa mite infestation levels in African honeybees. The two 

honeybee races, A.m. scutellata, and A.m. adonsonii which have been confirmed in Uganda 

(Kasangaki, 2016), abscond from beehives more frequently when disturbed than other races of 

A. mellifera (Hansen & Brodsgaard, 1997; Dietemann et al., 2009). During this study, 

abscondment occurred in 38 - 45% of colonies in the two AEZs of Uganda and accounted for the 

low Varroa mite infestation levels during the wet season. This behavioral trait could also result 

in disinfection in honeybee colonies formerly infected by parasites like P. larvae (Hansen and 

Brodsgaard 1997). Furthermore, the higher levels of hygienic and grooming behavior of African 

honeybees have been reported as key mechanisms for parasite resistance. Honeybee hygienic 

behavior may reduce the levels of AFB infection (Fries and Raina, 2003; Human et al., 2011) and 

Varroa mite infestation (Moretto, Guerra, & Bittencourt, 2006) resulting in higher resistance. In 
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addition, certain pests such as the wax moth, Galleria mellonella which is a very common pest in 

Africa and commonly affects weak colonies (Strauss et al., 2013) may reduce AFB pathogen 

infestation levels by destroying large amounts of infected combs after colony abscondment 

(Hansen and Brodsgaard, 1997; Human et al., 2011). The overall implication of this is that 

relatively very low AFB infection levels and extremely rare development of clinical symptoms are 

observed.  

 

Despite the low infestation levels of some honeybee parasites and pathogens and the lack of 

clinical signs due to the higher levels of disease resistance in African honeybees (Human et al., 

2011), the disease resistance trait may not persist long if pathogens accumulate in hives, 

especially with the increasing use of frame beehives. If honeybee breeding programs are not 

carefully done, the genes for resistance could be lost with far reaching consequences on 

honeybee health. Therefore, local beekeeping practices (e.g. the use of top-bar and traditional 

beehives) which are currently used and involve removal of the entire comb should not be 

abandoned since they help reduce pathogen accumulation in beehives.  

 

In Europe and North America, Varroa mites (VanEngelsdorp et al., 2008; Neumann & Carreck, 

2010), honeybee viruses (Cox-Foster et al., 2007; Meixner et al., 2014) and N. ceranae (Higes et 

al., 2008; Paxton, 2010) are associated with colony losses. Varroa mites vector honeybee viruses 

like DWV, KBV, BQCV and ABPV (Bowen-Walker et al., 1999; Chen et al., 2004; Shen et al., 2005; 

Le Conte et al., 2010). Moreover, synergistic interactions between honeybee parasites and 

pathogens e.g. Varroa and honeybee viruses undermines honeybee immunity and health (Di 

Prisco et al., 2016). The detection of these honeybee parasites and pathogens in Uganda clearly 

show the need for government to develop a honeybee health management plan to avert the 

likely food security risks associated with foreseen honeybee health threats. 

 

6.1.2 Environmental factors 

Currently, in Uganda beekeeping is practiced in a range of environments including protected 

areas (natural), agricultural and plantation forest (mostly Eucalyptus) landscapes (Chemurot et 
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al., 2016a). These beekeeping environments may have impacts on honeybee health. For instance, 

the number of honeybee virus infections (viral diversity) was correlated with elevation, height of 

hive placement and distances to potential water sources. Also, Nosema spore counts in colonies 

located in protected areas were significantly lower than those in farmlands and Eucalyptus 

plantations. From the regression models built, environmental factors (elevation, distances to 

potential water sources, nature of apiary slope and season) and human factors (agro-ecological 

zones, farming intensity and height of hive placement) to some extent explain honeybee parasite 

and pathogen presence and infestation levels. Specifically, the binary logistic regression models 

developed showed that 13.8%, 61.6% and 7.9% of the variance in viral, Nosema spore and Varroa 

mite presence respectively could be explained by the landscape and human factors explored. For 

honeybee viral diversity, Nosema spore and Varroa mite infestation levels; 8.8%, 4.6% and 5.3% 

respectively of the variance in infestation could be explained by the factors explored. The 

variation in the amount of variance explained by the factors investigated is likely due to 

differences in the parasite/pathogen life cycles and dependence on their hosts. For instance, 

Varroa mites lack free living stages and entirely depend on their hosts (Moretto & Leonidas, 2003; 

Rosenkranz et al., 2010), implying that the impacts of environmental factors act indirectly via the 

host. On the other hand, Nosema spp. is transmitted via fecal-oral routes (Smith, 2012) with 

possible direct effects of environmental factors on spore survival outside honeybee hosts.  

 

These findings suggest that environmental factors such as climate and vegetation modulate 

honeybee parasite and pathogen transmission, infestation levels and maybe honeybee health in 

general. In the UK, the frequency among 76% of bumble bee forage plants declined between 

1978 and 1998 (Carvell et al., 2006) raising concerns since floral changes are linked to pollinator 

dynamics (Carvell et al., 2006; Winfree et al., 2009). 

 

Given the high deforestation rates in Uganda (Obua et al., 2010) that lead to ecological changes 

and their relative importance on honeybee health, these findings raise concerns on the health of 

honeybees and their likely impact on pollination services. First, these results suggest that some 

environmental factors that are influenced by anthropogenic factors may impact on honeybee 
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health. With the increasing landscape and climatic changes, honeybee health could be more 

affected. For instance climate influences flower development, nectar and pollen production, 

which are key components in honeybee nutrition (Le Conte and Navajas, 2008). Moreover, poor 

honeybee nutrition has been linked to increased parasite/pathogen infestation levels (Invernizzi 

et al., 2011). Second, these results show the potential vulnerability of the honeybees to their 

parasites and pathogens contrary to the popular believe that African honeybees are 

tolerant/resistant to most honeybee pathogens. For instance, this work shows that increase in 

the number of honeybee viruses leads to a reduction in colony performance. Also, intensification 

of monocultures in farms will impact on honeybee health through increased pathogen infestation 

levels as seen in Nosema spp. Importantly, factors including; parasites, pathogens, nutrient 

availability, agro-chemical exposure and climatic conditions can act individually or synergistically 

to affect honeybee health. For example, pesticide exposure increases honeybee pathogen 

abundance (Pettis et al., 2012; Doublet et al., 2015) and nutritional deficiencies provide adequate 

conditions for parasite multiplication (Invernizzi et al., 2011). Therefore, efforts are needed to 

ensure proper nutrition for both managed and wild colonies through protection of natural 

habitats and planting of melliferous crops. 

 

The conceptual diagram (Figure 6.1) shows the range of variability of ‘‘Current honeybee 

environment’’ parameters for forage, land use change, natural enemies (alternative for parasites 

and pathogens) and pesticide use with only a small portion of the environment situation ‘‘space’’ 

currently exceeding the species-specific honeybee mortality threshold. ‘‘Future bee health’’ 

shows increases in extreme land use change, pesticide use and parasite/pathogen intensity 

events associated with foreseen anthropogenic/environmental changes, indicating increased 

risks of pesticide/pathogen/poor nutrition-induced die-off for current honeybee populations. 
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Figure 6.1: Honeybee vulnerability to changes in the environment in Africa. 
 

6.1.3 Effects on colony performance 

Honeybee colony strength is an important factor for honey production (Neupane et al., 2012) 

because it is correlated to the honey yields (Jevtić et al., 2009). From this study, the productivity 

of honeybee colonies in the eastern and western highlands AEZs of Uganda was generally low 

and comparable to the findings from the West Nile AEZ of Uganda (Chemurot, 2011). Different 

factors may explain such low productivity per beehive; notably, limited honeybee forage, 

inadequate colony management to prevent swarming, lack of knowledge and observance of 

apiary carrying capacity and pests which weaken colonies (Hussein, 2000).  

 

Studies have shown that parasite infestation such as Nosema (Botías et al., 2013) and Varroa 

(Navajas et al., 2008; 2010; Rosenkranz et al., 2010) can lower the strength and productivity of 

honeybee colonies. For instance, reduction in honey yields in Kenya between 2005 and 2007 was 
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reported and attributed to honeybee diseases (Muli et al., 2014). Importantly, the current study 

suggests that the performance of Ugandan honeybee colonies was negatively affected by viral 

and Nosema infestation. However, colony performance was not affected by Varroa mite 

infestation alone. Multiple pathogen infestation in some honeybee colonies was recorded. 

Honeybee parasites and pathogens together with pesticides and other honeybee health threats, 

have synergistic effects on honeybee health (Cornman et al., 2012; Doublet et al., 2015). The 

detection of these pathogens and parasites highlight the need for vigilance and development of 

strategies to manage them in the country. 

 

6.2 Conclusions 

This study confirmed the presence of five honeybee viruses (DWV, BQCV, ABPV, LSV and SBV), P. 

larvae, three Nosema spp. and V. destructor in Ugandan honeybee colonies. Apparently, 

increased honeybee viral diversity and Nosema are threats to the beekeeping sector while Varroa 

mites are not yet significantly affecting honeybee colonies in the two AEZs of Uganda. The 

composition of the parasite and pathogen complex of honeybees in the two AEZs of Uganda is 

somewhat similar but differs with landscape factors. For instance, the number of honeybee 

viruses declined with altitude and height of hive placement but increased with distances to 

potential water sources. Knowledge about the effects of honeybee parasites and pathogens on 

African honeybees has grown over the years (Strauss et al., 2014; Muli et al., 2014; Mumbi et al., 

2014; Strauss et al., 2015). Unfortunately, our understanding of the effects of landscape factors 

on honeybee parasite/pathogen distribution and infestation levels remains scanty. In this study, 

the low number of honeybee viruses at higher altitudes and in apiaries near potential water 

sources suggests impacts of landscape factors such as vegetation and climate on 

parasite/pathogen transmission and infestation levels. Climatic factors and vegetation could 

affect conditions that enhance parasite/pathogen transmission and infestation levels. Such 

conditions can include multiplication of reservoir hosts/vectors for the parasites/pathogens. For 

the new Nosema spp. it is unknown whether there are other reservoir hosts. These findings 

widen our understanding of the honeybee parasite and pathogen distribution and potential 

factors involved in addition to expanding the geographical distribution of AFB, LSV and SBV in 
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Africa. Deeper studies on the new Nosema species and generally African honeybee health should 

be carried out in order to: 1) understand distribution, transmission, development, 2) identify 

associated effects on honeybees at individual and colony levels and 3) to reach a better 

understanding of the poorly known African honeybee pathogen complex especially in terms of 

the identities of pathogens present and survival mechanisms. Finally, since the honeybee is an 

important source of income and livelihood to several rural farmers in Uganda, based on this work, 

a national honeybee health strategy is required particularly as beekeeping evolves from 

traditional to modern beekeeping. The results should be kept in mind when making decisions 

concerning honeybee parasite/pathogen management. 

 

6.3 Future perspectives  

Although it is widely believed that African honeybees are relatively more resistant to honeybee 

parasites and pathogens than other races, they seem to become vulnerable with accumulating 

stresses. Since the start of this PhD work, our knowledge about honeybee microsporidian 

parasites has been greatly widened through documentation of a new species. However, this 

opens several unanswered questions such as; what is its epidemiology, distribution, mode of 

spread, development, host range and its impacts on honeybees at individual and colony levels. 

We have suggested that abscondment in African honeybees can be a successful survival 

mechanism that ensures low Varroa mite infestation. This mechanism has also been suggested 

to reduce AFB infection in colonies (Hansen & Brodsgaard, 1997). However, it remains to be 

investigated if this mechanism ensures survival from other parasites/pathogens as well. For 

example, could it be that as the honeybee colony absconds, generally unhealthy, diseased or 

heavily parasite-infested worker bees that would otherwise be the source of infection are either 

left in the old nest to die or they perish along the way to new nest sites? If this is the case, then 

only “healthy bees” reach new nest sites! In addition, this study suggests that landscape factors 

influence honeybee parasite/pathogen infestation levels. The exact ways through which such 

factors influence honeybee parasite/pathogen infestation levels should be studied in the future. 

The efforts made to explore honeybee parasites and pathogens summarized in this thesis relied 

on samples collected from only two out of 10 AEZs of Uganda. Notably also, the laboratory 
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analyses conducted were biased for specific parasites/pathogens and no viral titer quantification 

was done. Therefore, future studies should consider sampling AEZs of Uganda and using unbiased 

honeybee pathogen screening techniques in order to provide a complete understanding of the 

honeybee pathosphere. Quantifying the viral titer in Ugandan honeybees will be interesting 

especially since viruses were not detected in Varroa mites collected from virus-positive colonies.  

In general, new pathogens of honeybees will probably be discovered as more studies look at 

honeybee health in less investigated zones. This will present new challenges that require inquiry 

including their transmission, development, host range, impact on honeybee health and 

interaction with other species. 

 

6.4 Recommendations  

i. The Ministry of Agriculture, Animal Industry and Fisheries (MAAIF), Uganda should develop a 

national honeybee health management strategy that details practices and actions such as bee 

health monitoring, stricter controls on movement of bees, improved hygiene and parasite 

screening of colonies for breeding programs, provision of water in apiaries, honeybee forage 

planting around apiaries and regular capacity building for apicultural extension workers. 

ii. Effort should be made to build the capacity of beekeeping extension workers on the 

honeybee parasites and pathogens in the country and how they can be managed so that they 

can provide beekeepers with up to date information and skills. 

iii. The use of top-bar beehives and traditional beekeeping systems should be encouraged in 

order to keep in balance the honeybee parasites and pathogens such as P. larvae that can 

accumulate in beehives. 

iv. Provision of water in apiaries during the dry season should be promoted in order to avoid 

long distances that increase chances of viral pathogen transmission.  

v. Beekeepers should be encouraged to place their beehives at recommended heights (1m for 

top-bar, 1.5m for traditional (log) for ease of manipulation and to avoid possible pathogen 

infestation.  
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vi. Currently, beekeepers in the study sites should not use pesticides to control Varroa mites 

since the honeybees can survive without the need for treatment with no significant reduction 

in colony performance. 

vii. Investigations on local remedies such as botanicals that can be used to control Varroa in case 

the situation changes should be considered. 

viii. Studies should be conducted on African honeybee race pathosphere using unbiased 

techniques, impacts of land use change, nutrition and pesticide use on bee health and 

synergistic impacts of these threats in order to generate information to enable more effective 

prioritization of African honeybee conservation and management efforts. 

ix. In this study, Varroa mite infestation, Nosema spores infection and P. larvae infection rates 

were relatively low. The mechanisms of honeybee parasite/pathogen resistance in local 

honeybee races should be investigated for informed decision making in the beekeeping 

industry. 

 

 



 

113 

 

References  

Abou-Shaara, H. F. (2014). The foraging behaviour of honey bees, Apis mellifera: a review. 

Veternarni Medicina, 59(1), 1–10. 

Adjare, S. O. (1990). Beekeeping in Africa. Rome: FAO Agricultural Services Bulletin. 

Adjlane, N., Dainat, B., Gauthier, L., & Dietemann, V. (2015). Atypical viral and parasitic pattern 

in Algerian honey bee subspecies Apis mellifera intermissa and A. m. sahariensis. 

Apidologie, 47(631), 631–641. http://doi.org/10.1007/s13592-015-0410-x 

Adjlane, N., Haddad, N., & Kechih, S. (2014). Comparative study between techniques for the 

diagnosis of American foulbrood (Paenibacillus larvae) in honeybee colony. Journal of 

Animal and Veterinary Advances, 13(16), 970–973. 

http://doi.org/10.3923/javaa.2014.970.973 

Adl, S. M., Simpson, A. G., Lane, C. E., Lukes, J., Bass, D., Bowser, S. S., … Spiegel, F. W. (2013). 

The revised classification of eukaryotes. Journal of Eukaryote Microbiology, 59(5), 1–45. 

http://doi.org/10.1111/j.1550-7408.2012.00644.x. 

Akinwande, K., Badejo, M., & Ogbogu, S. (2012). Incidence of the Korean haplotype of Varroa 

destructor in southwest Nigeria. Journal of Apicultural Research, 51(4), 369–370. 

http://doi.org/10.3896/IBRA.1.51.4.15 

Alaux, C., Folschweiller, M., McDonnell, C., Beslay, D., Cousin, M., Dussaubat, C., … Le Conte, Y. 

(2011). Pathological effects of the microsporidium Nosema ceranae on honey bee queen 

physiology (Apis mellifera). Journal of Invertebrate Pathology, 106, 380–385. 

http://doi.org/10.1016/j.jip.2010.12.005 

Al-Ghamdi, A. A., Nuru, A., Khanbash, M., & Smith, D. R. (2013). Geographical distribution and 

population variation of Apis mellifera jemenitica Ruttner. Journal of Apicultural Research, 

52(3), 124–133. http://doi.org/10.3896/IBRA.1.52.3.03 

Ali, M. A. M. (2007). The effect of supplemental feeding on brood production and poulation 

development of honey bee (Apis mellifera Jementica) colonies under central region 

conditions, Riyadh, Kingdom Of Saudi Arabia. Minufia J. Agric. Res., 32(3), 915–932. 

Ali, M. A. M. (2011). Comparative study for evaluating two honey bee races, Apis mellifera 

http://doi.org/10.3923/javaa.2014.970.973


Reference list 

 

jementica (indigenous race) and Apis mellifera carnica (carniolan race) in brood 

production, population development and foraging activity under the environmental 

conditions of the centra. Annals of Agricultural Sciences, 56(2), 127–134. 

http://doi.org/10.1016/j.aoas.2011.07.006 

Amakpe, F., De Smet, L., Brunain, M. B., Ravoet, J., Jacobs, F. J., Reybroeck, W., … de Graaf, D. C. 

(2015). Discovery of Lake Sinai virus and an unusual strain of Acute bee paralysis virus in 

West African apiaries. Apidologie, 47(1), 35–47. http://doi.org/10.1007/s13592-015-0372-

z 

Amssalu, B. A. (2002). Multivariate morphometric analysis and behaviour of honeybees (Apis 

mellifera L.) in the southern regions of Ethiopia. Rhodes University. 

Amssalu, B., Nuru, A., Radloff, S. E., & Hepburn, H. R. (2004). Multivariate morphometric 

analysis of honeybees (Apis mellifera ) in the Ethiopian region. Apidologie, 35, 71–81. 

http://doi.org/10.1051/apido 

Anderson, D. L., & Morgan, M. J. (2007). Genetic and morphological variation of bee-parasitic 

Tropilaelaps mites (Acari: Laelapidae): New and re-defined species. Experimental and 

Applied Acarology, 43(1), 1–24. http://doi.org/10.1007/s10493-007-9103-0 

Anderson, D. L., & Roberts, J. M. K. (2013). Standard methods for Tropilaelaps mites research. 

Journal of Apicultural Research, 52(4), 1–16. http://doi.org/10.3896/IBRA.1.52.4.21 

Anderson, D. L., & Trueman, J. W. H. (2000). Varroa jacobsoni (Acari: Varroidae) is more than 

one species. Experimental and Applied Acarology, 24(3), 165–189. 

http://doi.org/10.1023/A:1006456720416 

Anjum, S. I., Shah, A. H., Azim, M. K., Yousuf, M. J., Khan, S., & Khan, S. N. (2015). Prevalence of 

American foul brood disease of honeybee in north-west Pakistan. Biotechnology & 

Biotechnological Equipment, 29(4), 659–665. 

http://doi.org/10.1080/13102818.2015.1040454 

Antúnez, K., Anido, M., Branchiccela, B., Harriet, J., Campáb, J., & Zunino, P. (2012). American 

Foulbrood in Uruguay: Twelve years from its first report. Journal of Invertebrate Pathology, 

110, 129–131. http://doi.org/10.1016/j.jip.2012.02.008 

Antúnez, K., D’Alessandro, B., Corbella, E., Ramallo, G., & Zunino, P. (2006). Honeybee viruses in 



 

115 

 

Uruguay. Journal of Invertebrate Pathology, 93(1), 67–70. 

http://doi.org/10.1016/j.jip.2006.05.009 

Antúnez, K., Martín-Hernández, R., Prieto, L., Meana, A., Zunino, P., & Higes, M. (2009). 

Immune suppression in the honey bee (Apis mellifera) following infection by Nosema 

ceranae (Microsporidia). Environmental Microbiology, 11(9), 2284–2290. 

http://doi.org/10.1111/j.1462-2920.2009.01953.x 

Aronstein, K.A., Murray, K.D., de León, J.H., Qin, X., Weinstock, G.M., 2007. High mobility group 

(HMG-box) genes in the honeybee fungal pathogen Ascosphaera apis. Mycologia 99, 553–

561. doi:10.3852/mycologia.99.4.553 

Beetsma, J. (1994) The Varroa mite, a devastating parasite of western honeybees and an 

economic threat to beekeeping. Outlook Agr 23, 169-175. 

Bekesi, L., & Szalai, E. M. (2003). Experiments on hygienic behaviour of honey bees. Journal of 

Apicultural Science, 47(1), 5–10. 

Berényi, O., Bakonyi, T., Derakhshifar, I., Koglberger, H., Nowotny, N., 2006. Occurrence of Six 

Honeybee Viruses in Diseased Austrian Apiaries. Appl. Environ. Microbiol. 72, 2414–2420. 

doi:10.1128/AEM.72.4.2414 

Blanchard, P., Schurr, F., Celle, O., Cougoule, N., Drajnudel, P., Thiéry, R., … Ribière, M. (2008). 

First detection of Israeli acute paralysis virus (IAPV) in France, a dicistrovirus affecting 

honeybees (Apis mellifera). Journal of Invertebrate Pathology, 99(3), 348–350. 

http://doi.org/10.1016/j.jip.2008.07.006 

Botías, C., Martín-hernández, R., Barrios, L., Meana, A., & Higes, M. (2013). Nosema spp. 

infection and its negative effects on honey bees (Apis mellifera iberiensis) at the colony 

level. Veterinary Research, 44(25), 1–14. 

Bowen-Walker, P. L., Martin, S. J., & Gunn, A. (1999). The transmission of Deformed wing virus 

between honeybees (Apis mellifera L.) by the ectoparasitic mite Varroa jacobsoni Oud. 

Journal of Invertebrate Pathology, 73, 101–106. 

Bradbear, N., 2009. Bees and their role in forest livelihoods: A guide to the services by bees and 

the sustainable harvesting, processing and marketing of their products. FAO, Rome. 

Buchler, R., Berg, S., & Le Conte, Y. (2010). Breeding for resistance to Varroa destructor in 



Reference list 

 

Europe. Apidologie, 41, 393–408. http://doi.org/10.1051/apido/2010011 

Budge, G. E., Barrett, B., Jones, B., Pietravalle, S., Marris, G., Chantawannakul, P., … Brown, M. 

A. (2010). The occurrence of Melissococcus plutonius in healthy colonies of Apis mellifera 

and the efficacy of European foulbrood control measures. Journal of Invertebrate 

Pathology, 105(2), 164–170. http://doi.org/10.1016/j.jip.2010.06.004 

Calderón, R. A., Sanchez, L. A., Yanez, O., & Fallas, N. (2008). Presence of Nosema ceranae in 

Africanized honey bee colonies in Costa Rica. Journal of Apicultural Research, 47(4), 328–

329. http://doi.org/10.3896/IBRA.1.47.4.18 

Calderón, R. A., van Veen, J. W., Sommeijer, M. J., & Sanchez, L. A. (2010). Reproductive biology 

of Varroa destructor in Africanized honey bees (Apis mellifera). Experimental & Applied 

Acarology, 50(4), 281–297. http://doi.org/10.1007/s10493-009-9325-4 

Carletto, J., Blanchard, P., Gauthier, A., Schurr, F., Chauzat, M. ., & Ribière, M. (2013). Improving 

molecular discrimination of Nosema apis and Nosema ceranae. Journal of Invertebrate 

Pathology, 113, 52–55. http://doi.org/10.1016/j.jip.2013.01.005 

Carvell, C., Roy, D.B., Smart, S.M., Pywell, R.F., Preston, C.D., Goulson, D., 2006. Declines in 

forage availability for bumblebees at a national scale. Biol. Conserv. 132, 481–489. 

doi:10.1016/j.biocon.2006.05.008 

Chahbar, N., Muñoz, I., Dall’Olio, R., De la Rúa, P., Serrano, J., & Doumandji, S. (2013). 

Population structure of North African honey bees is influenced by both biological and 

anthropogenic factors. Journal of Insect Conservation, 17(2), 385–392. 

http://doi.org/10.1007/s10841-012-9520-1 

Chauzat, M., Laurent, M., Rivière, M., Saugeon, C., Hendrikx, P., & Ribiere-Chabert, M. (2014). 

Epilobee A pan-European epidemiological study on honeybee colony losses 2012-2013. 

Commission Européene. Sophia Antipolis: Epilobee. 

Chemurot, M. (2011). Beekeeping In Adjumani District, Uganda. Bee World, 88(3), 58–61. 

Chemurot, M., Akol, A. M., Masembe, C., De Smet, L., Descamps, T., & de Graaf, D. C. (2016a). 

Factors influencing the prevalence and infestation levels of Varroa destructor in honeybee 

colonies in two highland agro-ecological zones of Uganda. Experimental and Applied 

Acarology. http://doi.org/10.1007/s10493-016-0013-x 



 

117 

 

Chemurot, M., Brunain, M., Akol, A. M., Descamps, T., & de Graaf, D. C. (2016b). First detection 

of Paenibacillus larvae the causative agent of American Foulbrood in a Ugandan honeybee 

colony. SpringerPlus, 5(1), 1090. http://doi.org/10.1186/s40064-016-2767-3 

Chen, Y., Cheng, H., & Huang, C. (2008). American foulbrood spores in honey samples in Taiwan. 

Formosan Entomologist, 28(2), 133–143. 

Chen, Y., Evans, J. D., Smith, I. B., & Pettis, J. S. (2008). Nosema ceranae is a long-present and 

wide-spread microsporidian infection of the European honey bee (Apis mellifera) in the 

United States. Journal of Invertebrate Pathology, 97, 186–188. 

http://doi.org/10.1016/j.jip.2007.07.010 

Chen, Y., Evans, J. D., Zhou, L., Boncristiani, H., Kimura, K., Xiao, T., … Pettis, J. S. (2009). 

Asymmetrical coexistence of Nosema ceranae and Nosema apis in honey bees. Journal of 

Invertebrate Pathology, 101(3), 204–209. http://doi.org/10.1016/j.jip.2009.05.012 

Chen, Y.P., Huang, Z.Y., 2010. Nosema ceranae, a newly identified pathogen of Apis mellifera in 

the USA and Asia. Apidologie 41, 364–374. doi:10.1051/apido/2010021 

Chen, Y. P., & Siede, R. (2007). Honey bee viruses. Advances in Virus Research, 70(2007), 33–80. 

Chen, Y., Pettis, J. S., Evans, J. D., Kramer, M., & Feldlaufer, M. F. (2004). Transmission of 

Kashmir bee virus by the ectoparasitic mite Varroa destructor. Apidologie, 35, 441–448. 

http://doi.org/10.1051/apido 

Chen, Y., Zhao, Y., Hammond, J., Hsu, H., Evans, J., & Feldlaufer, M. (2004). Multiple virus 

infections in the honey bee and genome divergence of honey bee viruses. Journal of 

Invertebrate Pathology, 87, 84–93. http://doi.org/10.1016/j.jip.2004.07.005 

Cornman, R. S., Tarpy, D. R., Chen, Y., Jeffreys, L., Lopez, D., Pettis, J. S., … Evans, J. D. (2012). 

Pathogen webs in collapsing honey bee colonies. PLoS ONE, 7(8), 1–15. 

http://doi.org/10.1371/journal.pone.0043562 

Cox-Foster, D. L., Conlan, S., Holmes, E. C., Palacios, G., Evans, J. D., Moran, N. A., … Lipkin, W. I. 

(2007). A metagenomic survey of microbes in honey bee colony collapse disorder. Science, 

318(5848), 283–287. http://doi.org/10.1126/science.1146498 

Cuthbertson, A. G. S., Wakefield, M. E., Powell, M. E., Marris, G., Anderson, H., Budge, G. E., … 

Brown, M. A. (2013). The small hive beetle Aethina tumida: A review of its biology and 



Reference list 

 

control measures. Current Zoology, 59(5), 644–653. 

Dainat, B., Evans, J. D., Chen, Y. P., Gauthier, L., & Neumann, P. (2012). Dead or alive: Deformed 

wing virus and Varroa destructor reduce the life span of winter honeybees. Applied and 

Environmental Microbiology, 78(4), 981–987. http://doi.org/10.1128/AEM.06537-11 

Dainat, B., Ken, T., Berthoud, H., & Neumann, P. (2009). The ectoparasitic mite Tropilaelaps 

mercedesae (Acari, Laelapidae) as a vector of honeybee viruses. Insectes Sociaux, 56(1), 

40–43. http://doi.org/10.1007/s00040-008-1030-5 

Dale, V. H., & Polasky, S. (2007). Measures of the effects of agricultural practices on ecosystem 

services. Ecological Economics, 64, 286–296. 

http://doi.org/10.1016/j.ecolecon.2007.05.009 

de Graaf, D. C., Alippi, A. M., Antúnez, K., Aronstein, K. A., Budge, G., De Koker, D., … Genersch, 

E. (2013). Standard methods for American foulbrood research. Journal of Apicultural 

Research, 52(1), 1–28. http://doi.org/10.3896/IBRA.1.52.1.11 

de Graaf, D. C., Alippi, A. M., Brown, M., Evans, J. D., Feldlaufer, M., Gregorc, A., … Ritter, W. 

(2006). Diagnosis of American foulbrood in honey bees: A synthesis and proposed 

analytical protocols. Letters in Applied Microbiology, 43(6), 583–590. 

http://doi.org/10.1111/j.1472-765X.2006.02057.x 

de Graaf, D. C., Vandekerchove, D., Dobbelaere, W., Peeters, J. E., & Jacobs, F. J. (2001). 

Influence of the proximity of American foulbrood cases and apicultural management on 

the prevalence of Paenibacillus larvae spores in Belgian honey. Apidologie, 32, 587–599. 

http://doi.org/10.1051/apido:2001146 

De Guzman, L. I., & Delfinado-Baker, M. (1996). A new species of Varroa (acari: Varroidae) 

associated with Apis Koschevnikovi (apidae: Hymenoptera) in Borneo. International Journal 

of Acarology, 22(1), 23–27. http://doi.org/10.1080/01647959608684077 

de Miranda, J.R.D., Bailey, L., Ball, B.V., Blanchard, P., Budge, G.E., Chejanovsky, N., Chen, Y., 

Gauthier, L., Genersch, E., De Graaf, D.C., Ribière, M., Ryabov, E., De Smet, L., Steen, 

J.J.M.V., 2013. Standard methods for virus research in Apis mellifera. J. Apic. Res. 52, 1–56. 

doi:10.3896/IBRA.1.52.4.22 

de Miranda, J., Dainat, B., Locke, B., Cordoni, G., Bethoud, H., Gauthier, L., … Stoltz, D. B. (2010). 



 

119 

 

Genetic characterization of slow bee paralysis virus of the honeybee (Apis mellifera L.). 

Journal of General Virology, 91, 2524–2530. http://doi.org/10.1099/vir.0.022434-0 

de Miranda, J., & Genersch, E. (2010). Deformed wing virus. Journal of Invertebrate Pathology, 

103, S48–S61. http://doi.org/10.1016/j.jip.2009.06.012 

de Miranda, J. R., Cordoni, G., & Budge, G. (2011). The Acute bee paralysis virus – Kashmir bee 

virus – Israeli acute paralysis virus complex. Journal of Invertebrate Pathology, 103, S30–

S47. http://doi.org/10.1016/j.jip.2009.06.014 

De Smet, L., Ravoet, J., de Miranda, J. R., Wenseleers, T., Mueller, M. Y., Moritz, R. F. A., & de 

Graaf, D. C. (2012). BeeDoctor, a versatile MLPA-based diagnostic tool for screening bee 

viruses. PLoS ONE, 7(10), 1–8. http://doi.org/10.1371/journal.pone.0047953 

Delaney, D. A., & Tarpy, D. R. (2008). Beekeeping Note 3.03 09/2008. North Carolina. 

Delaplane, K. S., van der Steen, J., & Guzman-Novoa, E. (2013). Standard methods for 

estimating strength parameters of Apis mellifera colonies. Journal of Apicultural Research, 

52(1), 1–12. http://doi.org/10.3896/IBRA.1.52.1.03 

Delfinado-Baker, M., & Aggarwal, K. (1987). A new Varroa (acari: Varroidae) from the nest of 

Apis cerana (Apidae). International Journal of Acarology, 13(4), 233–237. 

http://doi.org/10.1080/01647958708683777 

Di Pasquale, G., Salignon, M., Le Conte, Y., Belzunces, L.P., Decourtye, A., Kretzschmar, A., 

Suchail, S., Brunet, J.L., Alaux, C., 2013. Influence of Pollen Nutrition on Honey Bee Health: 

Do Pollen Quality and Diversity Matter? PLoS ONE 8, 1–13.  

Di Prisco, G., Annoscia, D., Margiotta, M., Ferrara, R., Varricchio, P., Zanni, V., … Pennacchio, F. 

(2016). A mutualistic symbiosis between a parasitic mite and a pathogenic virus 

undermines honey bee immunity and health. Proceedings of the National Academy of 

Sciences, 113(12), 201523515. http://doi.org/10.1073/pnas.1523515113 

Di Prisco, G., Pennacchio, F., Caprio, E., Boncristiani, H. F., Evans, J. D., & Chen, Y. (2011). Varroa 

destructor is an effective vector of Israeli acute paralysis virus in the honeybee, Apis 

mellifera. Journal of General Virology, 92(1), 151–155. 

http://doi.org/10.1099/vir.0.023853-0 

Dietemann, V., Nazzi, F., Martin, S. J., Anderson, D. L., Locke, B., Delaplane, K. S., … Ellis, J. D. 



Reference list 

 

(2013). Standard methods for varroa research. Journal of Apicultural Research, 52(1), 1–54. 

http://doi.org/10.3896/IBRA.1.52.1.09 

Dietemann, V., Pirk, C. W. W., & Crewe, R. (2009). Is there a need for conservation of 

honeybees in Africa? Apidologie, 40(3), 285–295. 

Dively, G. P., Embrey, M. S., Kamel, A., Hawthorne, D. J., & Pettis, J. S. (2015). Assessment of 

chronic sublethal effects of imidacloprid on honey bee colony health. PLoS ONE, 10(3), 1–

25. http://doi.org/10.1371/journal.pone.0118748 

Dobbelaere, W., de Graaf, D. C., Peeters, J., & Jacobs, F. J. (2001). Development of a fast and 

reliable diagnostic method for American foulbrood disease (Paenibacillus larvae subsp. 

larvae) using a 16S rRNA gene based PCR. Apidologie, 32, 363–370. 

http://doi.org/10.1051/apido:2001136 

Dong, S., Shen, Z., Xu, L., & Zhu, F. (2010). Sequence and phylogenetic analysis of SSU rRNA 

gene of five microsporidia. Current Microbiology, 60(1), 30–37. 

http://doi.org/10.1007/s00284-009-9495-7 

Doublet, V., Labarussias, M., de Miranda, J. R., Moritz, R. F. A., & Paxton, R. J. (2015). Bees 

under stress: Sublethal doses of a neonicotinoid pesticide and pathogens interact to 

elevate honey bee mortality across the life cycle. Environmental Microbiology, 17(4), 969–

983. http://doi.org/10.1111/1462-2920.12426 

EFSA. (2013). Scientific Opinion on the risk of entry of Aethina tumida and Tropilaelaps spp. in 

the EU. European Food Safety Authority Journal, 11(3). 

http://doi.org/10.2903/j.efsa.2013.3128. 

Eisen, L., Bolling, B. G., Blair, C. D., Beaty, B. J., & Moore, C. G. (2008). Mosquito species 

richness, composition, and abundance along habitat-climate-elevation gradients in the 

northern Colorado Front Range. Journal of Medical Entomology, 45(4), 800–811. 

http://doi.org/10.1603/0022-2585(2008)45[800:MSRCAA]2.0.CO;2 

Eledu, C. A., Karamura, E. B., & Tushemereirwe, W. K. (2004). Agro-ecological distribution of 

banana systems in the great lakes region. African Crop Science Journal, 12(1), 33–42. 

Ellis, J. D., Hepburn, H. R., Delaplane, K. S., Neumann, P., & Elzen, P. J. (2003). The effects of 

adult small hive beetles, Aethina tumida (Coleoptera: Nitidulidae), on nests and flight 



 

121 

 

activity of Cape and European honey bees (Apis mellifera). Apidologie, 34, 399–408. 

http://doi.org/10.1051/apido 

Ellis, J. D., & Munn, P. A. (2005). The worldwide health status of honey bees. Bee World, 86(4), 

88–101. http://doi.org/10.1080/0005772X.2005.11417323 

Elzen, P. J., Baxter, J. R., Neumann, P., Solbrig, A., Pirk, C., Hepburn, H. ., … Randall, C. (2001). 

Behaviour of African and European subspecies of Apis mellifera toward the small hive 

beetle, Aethina tumida. Journal of Apicultural Research, 40(1), 40–41. 

http://doi.org/10.1080/00218839.2001.11101049 

Elzen, P. J., Baxter, J. R., Westervelt, D., Randall, C., Delaplane, K. S., Cutts, L., & Wilson, W. T. 

(1999). Field control and biology studies of a new pest species, Aethina tumida Murray 

(Coleoptera, Nitidulidae), attacking European honey bees in the Western Hemisphere. 

Apidologie, 30(5), 361–366. http://doi.org/10.1051/apido:19990501 

Emsen, B., Petukhova, T., & Guzman-Novoa, E. (2012). Factors limiting the growth of Varroa 

destructor populations in selected honeybee (Apis mellifera L.) colonies. Journal of Animal 

and Veterinary Advances, 11(24), 4519–4525. 

Evans, J. D., & Lopez, D. L. (2002). Complete mitochondrial DNA sequence of the important 

honey bee pest, Varroa destructor (Acari: Varroidae). Experimental and Applied Acarology, 

27, 69–78. http://doi.org/10.1023/A:1021574306010 

FAO. (1996). Agro-Ecological Zoning Guidelines. FAO Soils Bulletin 76, 3–5. 

Fazier, M., Muli, E., Conklin, T., Schmehl, D., Torto, B., Frazier, J., … Raina, S. (2010). A scientific 

note on Varroa destructor found in East Africa; threat or opportunity? Apidologie, 41(4), 

463–465. 

Fernández, J. M., Puerta, F., Cousinou, M., Dios-Palomares, R., Campano, F., & Redondo, L. 

(2012). Asymptomatic presence of Nosema spp. in Spanish commercial apiaries. Journal of 

Invertebrate Pathology, 111, 106–110. http://doi.org/10.1016/j.jip.2012.06.008 

Field, M. C., & Carrington, M. (2009). The trypanosome flagellar pocket. Nature Reviews. 

Microbiology, 7(11), 775–86. http://doi.org/10.1038/nrmicro2221 

Fletcher, D., Mackenzie, D., & Villouta, E. (2005). Modelling skewed data with many zeros: A 

simple approach combining ordinary and logistic regression. Environmental and Ecology 



Reference list 

 

Statistcs, 12, 45–54. 

Forsgren, E. (2010). European foulbrood in honey bees. Journal of Invertebrate Pathology, 103, 

S5–S9. http://doi.org/10.1016/j.jip.2009.06.016 

Forsgren, E., Budge, G. E., Charriere, J., & Hornitzky, M. A. Z. (2013). Standard methods for 

European foulbrood research. Journal of Apicultural Researche, 52(1), 1–14. 

http://doi.org/10.3896/IBRA.1.52.1.12 

Forsgren, E., De Miranda, J. R., Isaksson, M., Wei, S., & Fries, I. (2009). Deformed wing virus 

associated with Tropilaelaps mercedesae infesting European honey bees (Apis mellifera). 

Experimental and Applied Acarology, 47(2), 87–97. http://doi.org/10.1007/s10493-008-

9204-4 

Franck, P., Garnery, L., Loiseau, A., Oldroyd, B. P., Hepburn, H. R., Solignac, M., & Cornuet, J. M. 

(2001). Genetic diversity of the honeybee in Africa: Microsatellite and mitochondrial data. 

Heredity, 86(4), 420–430. http://doi.org/10.1046/j.1365-2540.2001.00842.x 

Fries, I., 1988. Infectivity and multiplication of Nosema apis Z. in the ventriculus of the honey 

bee. Apidologie 19, 319–328. doi:10.1051/apido 

Fries, I., Chauzat, M., Chen, Y. P., Doublet, V., Genersch, E., Gisder, S., … Williams, G. R. (2013). 

Standard methods for Nosema research. Journal of Apicultural Research, 52(1), 1–28. 

http://doi.org/10.3896/IBRA.1.52.1.14 

Fries, I., Feng, F., da Silva, A., Slemenda, S. B., & Pieniazek, N. J. (1996). Nosema ceranae n. sp. 

(Microspora, Nosematidae), morphological and molecular characterization of a 

microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). 

European Journal of Protistology, 32(3), 356–365. http://doi.org/10.1016/S0932-

4739(96)80059-9 

Fries, I., Lindström, A., & Korpela, S. (2006). Vertical transmission of American foulbrood 

(Paenibacillus larvae) in honey bees (Apis mellifera). Veterinary Microbiology, 114(3–4), 

269–274. http://doi.org/10.1016/j.vetmic.2005.11.068 

Fries, I., & Raina, S. (2003). American foulbrood and African honey bees (Hymenoptera: 

Apidae). Journal of Economic Entomology, 96(6), 1641–1647. http://doi.org/10.1603/0022-

0493-96.6.1641 



 

123 

 

Fries, I., Slemenda, S. B., da Silva, A., & Pieniazek, N. (2003). African honey bees (Apis mellifera 

scutellata) and nosema (Nosema apis) infections. Journal of Apicultural Research, 42(1–2), 

13–15. http://doi.org/10.1080/00218839.2003.11101080 

Gajger, I. T., Bičak, J., & Belužić, R. (2014). The occurrence of honeybee viruses in apiaries in the 

Koprivnica- Križevci district in Croatia. Veterinarski Arhiv, 84(4), 421–428. 

Gajger, I. T., Kolodziejek, J., Bakonyi, T., & Nowotny, N. (2014). Prevalence and distribution 

patterns of seven different honeybee viruses in diseased colonies: a case study from 

Croatia. Apidologie, 45, 701–706. http://doi.org/10.1007/s13592-014-0287-0 

Garnery, V., Garnery, L., Meixner, M., & Kamel, S. (2001). Genetic diversity in Apis mellifera 

Lamarckii from the Assiut region in Egypt. In 37th International Apicultural Congress (p. 

99164). Durban, South Africa. 

Garrido-Bailón, E., Higes, M., Martínez-Salvador, A., Antúnez, K., Botías, C., Meana, A., … 

Martín-Hernández, R. (2013). The prevalence of the honeybee brood pathogens 

Ascosphaera apis, Paenibacillus larvae and Melissococcus plutonius in Spanish apiaries 

determined with a new multiplex PCR assay. Microbial Biotechnology, 6(6), 731–739. 

http://doi.org/10.1111/1751-7915.12070 

Gençer, H. V., Baspinar, E., Firatli, C., & Tarihi, G. (2004). The graphic evaluation of 

morphological characters in honey bees (Apis mellifera L.) by chernoff faces. Tarim 

Bilimleri Dergisi, 10(3), 245–249. 

Genersch, E. (2010a). American Foulbrood in honeybees and its causative agent, Paenibacillus 

larvae. Journal of Invertebrate Pathology, 103, S10–S19. 

http://doi.org/10.1016/j.jip.2009.06.015 

Genersch, E. (2010b). Honey bee pathology: Current threats to honey bees and beekeeping. 

Applied Microbiology and Biotechnology, 87, 87–97. http://doi.org/10.1007/s00253-010-

2573-8 

Genersch, E., Forsgren, E., Pentikäinen, J., Ashiralieva, A., Rauch, S., Kilwinski, J., & Fries, I. 

(2006). Reclassification of Paenibacillus larvae subsp. pulvifaciens and Paenibacillus larvae 

subsp. larvae as Paenibacillus larvae without subspecies differentiation. International 

Journal of Systematic and Evolutionary Microbiology, 56(3), 501–511. 



Reference list 

 

http://doi.org/10.1099/ijs.0.63928-0 

Gern, L., Cadenas, F. M., & Burri, C. (2008). Influence of some climatic factors on Ixodes ricinus 

ticks studied along altitudinal gradients in two geographic regions in Switzerland. 

International Journal of Medical Microbiology, 298, 55–59. 

http://doi.org/10.1016/j.ijmm.2008.01.005 

Ghazoul, J. (2005). Buzziness as usual? Questioning the global pollination crisis. Trends in 

Ecology & Evolution, 20(7), 367–373. http://doi.org/10.1016/j.tree.2005.04.026 

Gisder, S., & Genersch, E. (2015). Special issue: Honey bee viruses. Viruses, 7(10), 5603–5608. 

http://doi.org/10.3390/v7102885 

Goodwin, M., & Eaton, C. V. (2001). Control of varroa (A guide for New Zealand beekeepers). 

New Zealand Ministry of Agriculture and Forestry. Wellington: New Zealand Ministry of 

Agriculture and Forestry. Retrieved from 

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:CONTROL+OF+VARROA

+A+Guide+for+New+Zealand+Beekeepers#2 

Grabensteiner, E., & Ritter, W. (2001). Sacbrood virus of the honeybee (Apis mellifera): rapid 

identification and phylogenetic analysis using reverse transcription-PCR. Clinical and 

Diagnostic Laboratory Immunology, 8(1), 93–104. http://doi.org/10.1128/CDLI.8.1.93 

Greig-Smith, P. W., Thompson, H. M., Hardy, A. R., Bew, M. H., Findlay, E., & Stevenson, J. H. 

(1994). Incidents of poisoning of honeybees (Apis mellifera) by agricultural pesticides in 

Great Britain 1981-1991. Crop Protection, 13(8), 567–581. http://doi.org/10.1016/0261-

2194(94)90002-7 

Haddad, N. J., Noureddine, A., Al-Shagour, B., Loucif-Ayad, W., El-Niweiri, M. A. A., Anaswah, E., 

… de Miranda, J. R. (2015). Distribution and variability of deformed wing virus of 

honeybees (Apis mellifera) in the Middle East and North Africa. Insect Science, n/a-n/a. 

http://doi.org/10.1111/1744-7917.12277 

Hamdi, C., Essanaa, J., Sansonno, L., Crotti, E., Abdi, K., Barbouche, N., … Cherif, A. (2013). 

Genetic and biochemical diversity of Paenibacillus larvae isolated from Tunisian infected 

honey bee broods. BioMed Research International, 2013. 

http://doi.org/10.1155/2013/479893 



 

125 

 

Hamiduzzaman, M. M., Guzman-Novoa, E., Goodwin, P. H., Reyes-Quintana, M., Koleoglu, G., 

Correa-Benítez, A., & Petukhova, T. (2015). Differential responses of Africanized and 

European honey bees (Apis mellifera) to viral replication following mechanical 

transmission or Varroa destructor parasitism. Journal of Invertebrate Pathology, 126, 12–

20. http://doi.org/10.1016/j.jip.2014.12.004 

Hansen, H., & Brodsgaard, C. J. (1997). The spread and control of American foulbrood. Bees for 

Development Journal, 76, 0–1. 

Hansen, H., Brodsgaard, C. J., Kryger, P., & Nicolaisen, M. (2003). A scientific note on the 

presence of Paenibacillus larvae larvae spores in sub-Saharan African honey. Apidologie, 

34, 471–472. http://doi.org/10.1051/apido 

Harbo, J. R., & Harris, J. W. (2005). Suppressed mite reproduction explained by the behaviour of 

adult bees. Journal of Apicultural Research, 44(1), 21–23. http://doi.org/10.1051/apido 

Hatjina, F., Tsoktouridis, G., Bouga, M., Charistos, L., Evangelou, V., Avtzis, D., Meeus, I., 

Brunain, M., Smagghe, G., de Graaf, D.C., 2011. Polar tube protein gene diversity among 

Nosema ceranae strains derived from a Greek honey bee health study. J. Invertebr. Pathol. 

108, 131–134. doi:10.1016/j.jip.2011.07.003 

Hemp, A. (2005). Continuum or zonation? Altitudinal gradients in the forest vegetation of Mt. 

Kilimanjaro. Plant Ecology. http://doi.org/10.1007/s11258-005-9049-4 

Higes, M., Esperón, F., Sánchez-Vizcaíno, J.M., 2007a. First report of black queen-cell virus 

detection in honey bees (Apis mellifera) in Spain. Spanish J. Agric. Res. 5, 322–325. 

doi:10.5424/sjar/2007053-263 

Higes, M., García-Palencia, P., Martín-Hernández, R., & Meana, A. (2007). Experimental 

infection of Apis mellifera honeybees with Nosema ceranae (Microsporidia). Journal of 

Invertebrate Pathology, 94(3), 211–217. http://doi.org/10.1016/j.jip.2006.11.001 

Higes, M., Martín, R., & Meana, A. (2006). Nosema ceranae, a new microsporidian parasite in 

honeybees in Europe. Journal of Invertebrate Pathology, 92, 93–95. 

http://doi.org/10.1016/j.jip.2006.02.005 

Higes, M., Martín-hernández, R., Botías, C., Bailón, E. G., González-porto, A. V., Barrios, L., … 

Meana, A. (2008). How natural infection by Nosema ceranae causes honeybee colony 



Reference list 

 

collapse. Environmental Microbiology, 10(10), 2659–2669. http://doi.org/10.1111/j.1462-

2920.2008.01687.x 

Higes, M., Martín-Hernández, R., Garrido-Bailón, E., Botías, C., & Meana, A. (2009). The 

presence of Nosema ceranae (Microsporidia) in North African honey bees (Apis mellifera 

intermissa). Journal of Apicultural Research, 48(3), 217–219. 

http://doi.org/10.3896/IBRA.1.48.3.12 

Hood, W. M. M. (2004). The small hive beetle, Aethina tumida: a review. Bee World, 

85(September), 51–59. 

https://en.climate-data.org/location/30666/  

https://en.climate-data.org/location/780530/  

https://en.climate-data.org/location/505145/ 

https://en.climate-data.org/location/782724/ 

Huang, W. F., Jiang, J. H., Chen, Y. W., & Wang, C. H. (2007). A Nosema ceranae isolate from the 

honeybee Apis mellifera. Apidologie, 38(1), 30–37. http://doi.org/10.1051/apido:2006054 

Human, H., Pirk, C. W. W., Crewe, R. M., & Dietemann, V. (2011). The honeybee disease 

American foulbrood - an African perspective. African Entomology, 19(3), 551–557. 

Hussein, M. H. (2000). A review of beekeeping in Arab countries. Bee World, 81(2), 56–71. 

http://doi.org/10.1080/0005772X.2000.11099473 

 Hussein, M. H. (2001). Beekeeping in Africa: I- North , East , North-East and West African 

Countries. Proc. 37th Int. Apic. Congr., 28 Oct – 1 Nov 2001, Durban, South Africa, 

(November), 13. Retrieved from 

http://www.apimondia.com/congresses/2001/Papers/001.pdf 

Invernizzi, C., Santos, E., Garcia, E., Daners, G., Landro, D., Saadoun, A., & Cabrera, C. (2011). 

Sanitary and nutritional characterization of honeybee colonies in Eucalyptus grandis 

plantations. Arch Zootec, 60(232), 1303–1314. 

Jacobs, F. J., Simoens, C., de Graaf, D. C., & Deckers, J. (2006). Scope for non-wood forest 

products income generation from rehabilitation areas: focus on beekeeping. Journal of the 

Drylands, 1(2), 171–185. Retrieved from 

https://en.climate-data.org/location/30666/
https://en.climate-data.org/location/780530/
https://en.climate-data.org/location/505145/
https://en.climate-data.org/location/782724/


 

127 

 

http://www.metafro.be/Members/rafaerts/JDrylands/Vol1(2)-2006/JD12_171-185.pdf 

Jensen, A. B., Aronstein, K., Flores, J. M., Vojvodic, S., Palacio, A., & Spivak, M. (2013). Standard 

methods for fungal brood disease research. Journal of Apicultural Research, 52(1), 1–20. 

http://doi.org/10.3896/IBRA.1.52.1.13 

Jensen, A.B., Pedersen, B.V., Eilenberg, J., 2009. Differential susceptibility across honey bee 

colonies in larval chalkbrood resistance. Apidologie 40, 524–534. 

Jevtić, G., Mladenović, M., Anđelković, B., Nedić, N., Sokolović, D., & Štrbanović, R. (2009). The 

correlation between colony strength, food supply and honey yield in honeybee colonies. 

Biotechnology in Animal Husbandry, 25(5–6), 1141–1147. 

Kabi, F., Masembe, C., Muwanika, V., Kirunda, H., & Negrini, R. (2014). Geographic distribution 

of non-clinical Theileria parva infection among indigenous cattle populations in contrasting 

agro-ecological zones of Uganda: implications for control strategies. Parasites & Vectors, 7, 

414. http://doi.org/10.1186/1756-3305-7-414 

Kajobe, R., Agea, J. G., Kugonza, D. R., Alioni, V., Otim, S. A., & Rureba, T. (2009). National 

beekeeping calendar, honeybee pest and disease control methods for improved production 

of honey and other hive products in Uganda. Entebee: National Agricultural Research 

Organisation. 

Kajobe, R., Marris, G., Budge, G., Laurenson, L., Cordoni, G., Jones, B., … Brown, M. A. (2011). 

First molecular detection of a viral pathogen in Ugandan honey bees. Journal of 

Invertebrate Pathology, 104(2), 153–156. http://doi.org/10.1016/j.jip.2010.02.007 

Kamanyire, M. (2000). Sustainability indicators for natural resource management and policy in 

Uganda: Working Paper 3. Economic Policy Research Centre. http://doi.org/1 902518632 

Kasangaki, P., 2016. Characterization of honeybee (Apis mellifera L.) races and studies of some 

aspects of their behaviour in Uganda. PhD thesis, Nairobi University. 

Kasangaki, P., Otim, A. S., Abila, P. P. O., Angiro, C., Chemurot, M., & Kajobe, R. (2015). The 

presence of varroa in Uganda and knowledge about it by the beekeeping industry. Journal 

of Apicultural Research, 54(4), 373–377. 

http://doi.org/doi.org/10.1080/00218839.2016.1159858 

Kevan, P. G. (1975). Forest application of the insecticide fenitrothion and its effect on wild bee 



Reference list 

 

pollinators (Hymenoptera: Apoidea) of lowbush blueberries (Vaccinium spp.) in Southern 

New Brunswick, Canada. Biological Conservation, 7(4), 301–309. 

http://doi.org/10.1016/0006-3207(75)90045-2 

Kevan, P. G., & Phillips, T. P. (2001). The Economic Impacts of Pollinator Declines: An Approach 

to Assessing the Consequences. Conservation Ecology, 5(1), 1–15. Retrieved from 

http://www.consecol.org/vol5/iss1/art8 

Khongphinitbunjong, K., Neumann, P., Chantawannakul, P., & Williams, G. R. (2016). The 

ectoparasitic mite Tropilaelaps mercedesae reduces western honey bee, Apis mellifera, 

longevity and emergence weight, and promotes Deformed wing virus infections. Journal of 

Invertebrate Pathology, 137, 38–42. http://doi.org/10.1016/j.jip.2016.04.006 

King, L.E., Douglas-Hamilton, I., Vollrath, F., 2011. Beehive fences as effective deterrents for 

crop-raiding elephants: Field trials in northern Kenya. Afr. J. Ecol. 49, 431–439. 

doi:10.1111/j.1365-2028.2011.01275.x 

Klein, A., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & 

Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. 

Proceedings of The Royal Society, 274(1608), 303–313. 

http://doi.org/10.1098/rspb.2006.3721 

Kojima, Y., Toki, T., Morimoto, T., Yoshiyama, M., Kimura, K., & Kadowaki, T. (2011). Infestation 

of Japanese native honey bees by tracheal mite and virus from non-native European honey 

bees in Japan. Microbial Ecology, 62(4), 895–906. http://doi.org/10.1007/s00248-011-

9947-z 

Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis 

version 7.0 for bigger datasets. Molecular Biology and Evolution, msw054. 

http://doi.org/10.1093/molbev/msw054 

Kumsa, T., & Takele, D. (2014). Assessment of the effect of seasonal honeybee management on 

honey production of Ethiopian honeybee (Apis mellifera) in modern beekeeping in Jimma 

zone. Greener Journal of Plant Breeding and Crop Science, 2(3), 067–075. 

Langridge, D.F., & Mcghee, R.B. (1967). Crithidia mellificae n sp: An acidophilic trypanosomatid 

of honey bee Apis mellifera. J Protozool 14, 485. 



 

129 

 

Laurent, M., Hendrikx, P., Ribiere-Chabert, M., & Chauzat, M. (2015). A pan-European 

epidemiological study on honeybee colony losses 2012-2014. Sophia Antipolis: Epilobee. 

Le Conte, Y., Ellis, M., & Ritter, W. (2010). Varroa mites and honey bee health: can Varroa 

explain part of the colony losses? Apidologie, 41, 353–363. 

Le Conte, Y., & Navajas, M. (2008). Climate change: Impact on honey bee populations and 

diseases. Revue Scientifique Et Technique-Office International Des Epizooties, 27(2), 499–

510. Retrieved from <Go to ISI>://WOS:000259353700016 

Li, J. L., Cornman, R. S., Evans, J. D., Pettis, J. S., Zhao, Y., Murphy, C., … Chen, Y. P. (2014). 

Systemic spread and propagation of a plant-pathogenic virus in European honeybees, Apis 

mellifera. mBio, 5(1), e00898-13. http://doi.org/10.1128/mBio.00898-13.Editor 

Lindstrom, A., Korpela, S., & Fries, I. (2008). Horizontal transmission of Paenibacillus larvae 

spores between honey bee (Apis mellifera) colonies through robbing. Apidologie, 39, 515–

522. 

Locke, B., Forsgren, E., Fries, I., & de Miranda, J. R. (2012). Acaricide treatment affects viral 

dynamics in Varroa destructor-infested honey bee colonies via both host physiology and 

mite control. Applied and Environmental Microbiology, 78(1), 227–235. 

http://doi.org/10.1128/AEM.06094-11 

Loucif-Ayad, W., Chefrour, A., Algharibeh, M., & Haddad, N. (2013). First detection of Deformed 

wing virus of honeybees in Algeria. Phytoparasitica, 41(4), 445–447. 

http://doi.org/10.1007/s12600-013-0307-z 

Lozano-Fuentes, S., Hayden, M. H., Welsh-Rodriguez, C., Ochoa-Martinez, C., Tapia-Santos, B., 

Kobylinski, K. C., … Eisen, L. (2012). The dengue virus mosquito vector Aedes aegypti at 

high elevation in México. American Journal of Tropical Medicine and Hygiene, 87(5), 902–

909. http://doi.org/10.4269/ajtmh.2012.12-0244 

Lukeš, J., Skalický, T., Týč, J., Votýpka, J., & Yurchenko, V. (2014). Evolution of parasitism in 

kinetoplastid flagellates. Molecular and Biochemical Parasitology, 195(2), 115–122. 

http://doi.org/10.1016/j.molbiopara.2014.05.007 

Manley, R., Boots, M., & Wilfert, L. (2015). Emerging viral disease risk to pollinating insects: 

ecological, evolutionary and anthropogenic factors. The Journal of Applied Ecology, 52(2), 



Reference list 

 

331–340. http://doi.org/10.1111/1365-2664.12385 

Martín-hernández, R., Botías, C., Bailón, E.G., Martínez-salvador, A., Prieto, L., 2012. 

Microsporidia infecting Apis mellifera: coexistence or competition. Is Nosema ceranae 

replacing Nosema apis? Environ. Microbiol. 14, 2127–2138. doi:10.1111/j.1462-

2920.2011.02645.x 

Martin, S. J. (2001). The role of Varroa and viral pathogens in the collapse of honeybee 

colonies: a modelling approach. Journal of Applied Ecology, 38, 1082–1093. 

Martin, S. J., Highfield, A. C., Brettell, L., Villalobos, E. M., Budge, G. E., Powell, M., … Schroeder, 

D. C. (2012). Global honey bee viral landscape altered by a parasitic mite. Science, 

336(6086), 1304–1306. 

Martin, S. J., & Medina, L. M. (2004). Africanized honeybees have unique tolerance to Varroa 

mites. Trends in Parasitology, 20(3), 112–114. http://doi.org/10.1016/j.pt.2003.12.005 

Masry, S. H. D., Kabeil, S. S., & Hafez, E. E. (2014). New Paenibacillus larvae bacterial isolates 

from honey bee colonies infected with American foulbrood disease in Egypt. Biotechnology 

and Biotechnological Equipment, 28(2), 271–276. 

http://doi.org/10.1080/13102818.2014.906826 

Matheson, A. (1993). World bee health report. Bee World, 74(4), 176–212. 

http://doi.org/10.1080/0005772X.1993.11099183 

Mayack, C., & Naug, D. (2009). Energetic stress in the honeybee Apis mellifera from Nosema 

ceranae infection. Journal of Invertebrate Pathology, 100(3), 185–188. 

http://doi.org/10.1016/j.jip.2008.12.001 

Mayo, M. A. (2002). Virus taxonomy. Archives of Virology, 147(5), 1071–6. 

http://doi.org/10.1007/s007050200036 

McMenamin, A. J., & Genersch, E. (2015). Honey bee colony losses and associated viruses. 

Current Opinion in Insect Science, 8(January), 121–129. 

http://doi.org/10.1016/j.cois.2015.01.015 

McMullan, J. B., & Brown, M. J. F. (2009). A qualitative model of mortality in honey bee (Apis 

mellifera) colonies infested with tracheal mites (Acarapis woodi). Experimental and Applied 

Acarology, 47(3), 225–234. http://doi.org/10.1007/s10493-008-9213-3 



 

131 

 

Meixner, M. D., Francis, R. M., Gajda, A., Kryger, P., Andonov, S., Uzunov, A., … Wilde, J. (2014). 

Occurrence of parasites and pathogens in honey bee colonies used in a European 

genotype-environment interactions experiment. Journal of Apicultural Research, 53(2), 

215–219. http://doi.org/10.3896/IBRA.1.53.2.04 

Melin, A., Rouget, M., Midgley, J. J., & Donaldson, J. S. (2014). Pollination ecosystem services in 

South African agricultural systems. South African Journal of Science, 110(11), 1–9. 

http://doi.org/10.1590/sajs.2014/20140078 

Menail, A. H., Piot, N., Meeus, I., Smagghe, G., & Loucif-Ayad, W. (2016). Large pathogen 

screening reveals first report of Megaselia scalaris (Diptera: Phoridae) parasitizing Apis 

mellifera intermissa (Hymenoptera: Apidae). Journal of Invertebrate Pathology, 137(June), 

33–37. http://doi.org/10.1016/j.jip.2016.04.007 

Mendoza, Y., Díaz, S., Ramallo, G., & Invernizzi, C. (2012). Incidence of Nosema ceranae during 

winter in honeybee colonies removed from Eucalyptus grandis plantations. Veterinaria, 

48(188), 13–19. Retrieved from http://dialnet.unirioja.es/servlet/articulo?codigo=4197235 

Mill, A.C., Rushton, S.P., Shirley, M.D.., Smith, G.C., Mason, P., Brown, M.A., Budge, G.E., 2014. 

Clustering, persistence and control of a pollinator brood disease: Epidemiology of 

American foulbrood. Environ. Microbiol. 16, 3753–3763. doi:10.1111/1462-2920.12292 

Moretto, G., Guerra, J. C. V., & Bittencourt, C. V. (2006). Uncapping activity of Apis mellifera L. 

(Hymenoptera: Apidae) towards worker brood cells infested with the mite Varroa 

destructor Anderson & Treuman (Mesostigmata: Varroidae). Neotropical Entomology, 

35(3), 299–301. 

Moritz, R. F. A., de Miranda, J. R., Fries, I., Le Conte, Y., Neumann, P., & Paxton, R. J. (2010). 

Research strategies to improve honeybee health in Europe. Apidologie, 41, 227–242. 

Morrissey, B. J., Helgason, T., Poppinga, L., Fünfhaus, A., Genersch, E., & Budge, G. E. (2014). 

Biogeography of Paenibacillus larvae, the causative agent of American foulbrood, using a 

new multilocus sequence typing scheme. Environmental Microbiology. 

http://doi.org/10.1111/1462-2920.12625 

Mouret, C., Lambert, O., Piroux, M., Beaudeau, F., Provost, B., & Benet, P. (2013). Prevalence of 

12 infectious agents in field colonies of 18 apiaries in western France. Revue Méd. Vét., 



Reference list 

 

164(12), 577–582. 

Muli, E., Patch, H., Frazier, M., Frazier, J., Torto, B., Baumgarten, T., … Grozinger, C. (2014). 

Evaluation of the distribution and impacts of parasites, pathogens, and pesticides on 

honey bee (Apis mellifera) populations in East Africa. PLoS ONE, 9(4), 1–11. 

http://doi.org/10.1371/journal.pone.0094459 

Mumbi, C. T., Mwakatobe, A. R., Mpinga, I. H., Richard, A., & Machumu, R. (2014). Parasitic 

mite, Varroa species (Parasitiformes: Varroidae) infesting the colonies of African 

honeybees, Apis mellifera scutellata (Hymenoptera: Apididae) in Tanzania. Journal of 

Entomology and Zoology Studies, 2(3), 188–196. 

Mumoki, F. N., Fombong, A. T., Muli, E., Muigai, A. W. T., & Masiga, D. (2014). An inventory of 

documented diseases of African honeybees. African Entomology, 22(3), 473–487. 

http://doi.org/10.4001/003.022.0313 

Munyuli, M.B.T., 2013. Pollinator biodiversity in Uganda and in Sub-Sahara Africa: Landscape 

and habitat management strategies for its conservation, International Journal of 

Biodiversity and Conservation. 

Mutinelli, F., Montarsi, F., Federico, G., Granato, A., Ponti, A. M., Grandinetti, G., … Chauzat, M. 

(2014). Detection of Aethina tumida Murray (Coleoptera: Nitidulidae.) in Italy: outbreaks 

and early reaction measures. Journal of Apicultural Research, 53(5), 569–575. 

http://doi.org/10.3896/IBRA.1.53.5.13 

Navajas, M., Anderson, D. L., de Guzman, L. I., Huang, Z. Y., Clement, J., Zhou, T., & Le Conte, Y. 

(2010). New Asian types of Varroa destructor: a potential new threat for world apiculture. 

Apidologie, 41, 181–193. 

Navajas, M., Migeon, A., Estrada-Pena, A., Mailleux, A., Servigne, P., & Petanović, R. (2010). 

Mites and ticks (Acari). BioRisk, 4(1), 149–192. http://doi.org/10.3897/biorisk.4.58 

Navajas, M., Migeon, A., Alaux, C., Martin-Magniette, M. L., Robinson, G. E., Evans, J. E., … Le 

Conte, Y. (2008). Differential gene expression of the honey bee Apis mellifera associated 

with Varroa destructor infection. BMC Genomics, 9(April), 301. 

http://doi.org/10.1186/1471-2164-9-301 

NBU. (2014). Wax Moth. In National Bee Unit. National Bee Unit. 

http://doi.org/10.3897/biorisk.4.58


 

133 

 

Nedić, N., Stanisavljević, L., Mladenović, M., & Stanisavljević, J. (2009). Molecular 

characterization of the honeybee Apis mellifera carnica in Serbia. Archives of Biological 

Sciences, 61(4), 587–598. http://doi.org/10.2298/ABS0904587N 

NEMA. (2009). Uganda Atlas of our Changing Environment. Kampala: National Environment 

Management Authority (NEMA) NEMA House, Jinja Road P. O Box 22255 Kampala Uganda. 

Neumann, P., & Carreck, N. . (2010). Honey bee colony losses. Journal of Apicultural Research, 

49(1), 1–6. http://doi.org/10.3896/IBRA.1.49.1.01 

Neumann, P., & Elzen, P. J. (2004). The biology of the small hive beetle (Aethina tumida, 

Coleoptera: Nitidulidae): Gaps in our knowledge of an invasive species. Apidologie, 35, 

229–247. http://doi.org/10.1051/apido 

Neumann, P., & Hartel, S. (2004). Removal of small hive beetle (Aethina tumida) eggs and larvae 

by African honeybee colonies (Apis mellifera scutellata). Apidologie, 35(1), 31–36. 

http://doi.org/10.1051/apido 

Neupane, K. R., Woyke, J., & Wilde, J. (2012). Effect of initial strength of honey bee colonies 

(Apis mellifera) supered in different ways on maximizing honey production in Nepal. 

Journal of Apicultural Science, 56(2), 71–82. http://doi.org/10.2478/v10289-012-0025-7 

Nguyen, B. K., Ribière, M., VanEngelsdorp, D., Snoeck, C., Saegerman, C., Kalkstein, A. L., … 

Haubruge, E. (2011). Effects of honey bee virus prevalence, Varroa destructor load and 

queen condition on honey bee colony survival over the winter in Belgium. Journal of 

Apicultural Research, 50(3), 195–202. http://doi.org/10.3896/IBRA.1.50.3.03 

Nicodemo, D., De Jong, D., Couto, R. H. N., & Malheiros, E. B. (2013). Honey bee lines selected 

for high propolis production also have superior hygienic behavior and increased honey and 

pollen stores. Genetics and Molecular Research, 12(4), 6931–6938. 

Obua, J., Agea, J. G., & Ogwal, J. J. (2010). Status of forests in Uganda. African Journal of 

Ecology, 48(4), 853–859. http://doi.org/10.1111/j.1365-2028.2010.01217.x 

OIE. (2011). Terrestrial Animal Health Code. Chapter 1.4 Animal Health Surveillance (Vol. I). 

Paris: World Organisation for Animal Health (OIE). http://doi.org/10.1024/0036-

7281.147.3.143a 

OIE, 2013. Nosemosis of honey bees. OIE Terr. Man. 53, 1689–1699. 



Reference list 

 

doi:10.1017/CBO9781107415324.004 

Oudemans, A. C. (1904). Laelaps versteegii, a new species of parasitic mite. Notes from the 

Leyden Museum, 24, 223–231. Retrieved from 

http://www.biodiversitylibrary.org/part/150657 

Pacini, A., Giacobino, A., Molineri, A., Cagnolo, N.B., Aignasse, A., Zago, L., Mira, A., Izaguirre, 

M., Schnittger, L., Orellano, E., Bertozzi, E., Pietronave, H., S., M., 2016. Risk factors 

associated with the abundance of Nosema spp. in apiaries located in temperate and 

subtropical conditions after honey harvest. J. Apic. Res. 55, 342–350. 

doi:10.1080/00218839.2016.1245396 

Palacio, M. A., Rodriguez, E., Goncalves, L., Bedascarrasbure, E., & Spivak, M. (2010). Hygienic 

behaviors of honey bees in response to brood experimentally pin-killed or infected with 

Ascosphaera apis. Apidologie. 

Paxton, R. J. (2010). Does infection by Nosema ceranae cause “Colony Collapse Disorder” in 

honey bees (Apis mellifera)? Journal of Apicultural Research, 49(1), 80–84. 

http://doi.org/10.3896/IBRA.1.49.1.11 

Paxton, R. J., Klee, J., Korpela, S., & Fries, I. (2007). Nosema ceranae has infected Apis mellifera 

in Europe since at least 1998 and may be more virulent than Nosema apis. Apidologie, 38, 

558–565. http://doi.org/10.1051/apido 

Pettis, J. S., Vanengelsdorp, D., Johnson, J., & Dively, G. (2012). Pesticide exposure in honey 

bees results in increased levels of the gut pathogen Nosema. Naturwissenschaften, 99(2), 

153–158. http://doi.org/10.1007/s00114-011-0881-1 

Pirk, C. W. W., Strauss, U., Yusuf, A. A. Y., & Demares, F. D. (2015). Honeybee health in Africa — 

a review. Apidologie. http://doi.org/10.1007/s13592-015-0406-6 

Pokhrel, S., Thapa, R. B., Neupane, F. P., & Shrestha, S. M. (2006). Absconding behavior and 

management of Apis cerana F. honeybee in Chitwan, Nepal. J. Inst. Agric. Anim. Sci., 27, 

77–86. 

Qin, X., Evans, J. D., Aronstein, K. A., Murray, K. D., & Weinstock, G. M. (2006). Genome 

sequences of the honey bee pathogens Paenibacillus larvae and Ascosphaera apis. Insect 

Molecular Biology, 15(5), 715–718. http://doi.org/10.1111/j.1365-2583.2006.00694.x 



 

135 

 

Quarles, W. (2011). Pesticides and honey bee death and decline. IPM Practitioner, 33(1), 1–20. 

Retrieved from http://www.birc.org/JanFeb2011.pdf 

Rasolofoarivao, H., Clemencet, J., Ravaomanarivo, L. H. ., Razafindrazaka, D., Reynaud, B., & 

Delatte, H. (2013). Spread and strain determination of Varroa destructor (Acari: Varroidae) 

in Madagascar since its first report in 2010. Exp Appl Acarol, 60, 521–530. 

http://doi.org/10.1007/s10493-013-9658-x 

Ravoet, J., Maharramov, J., Meeus, I., De Smet, L., Wenseleers, T., Smagghe, G., & de Graaf, D. 

C. (2013). Comprehensive bee pathogen screening in Belgium reveals Crithidia mellificae as 

a new contributory factor to winter mortality. PLoS ONE, 8(8). 

http://doi.org/10.1371/journal.pone.0072443 

Ribière, M., Olivier, V., & Blanchard, P. (2010). Chronic bee paralysis: A disease and a virus like 

no other? Journal of Invertebrate Pathology, 103, S120–S131. 

http://doi.org/10.1016/j.jip.2009.06.013 

Rinderer, T. E., Harris, J. W., Hunt, G. J., & de Guzman, L. I. (2010). Breeding for resistance to 

Varroa destructor in North America. Apidologie, 41, 409–424. 

http://doi.org/10.1051/apido/2010015 

Rosenkranz, P., Aumeier, P., & Ziegelmann, B. (2010). Biology and control of Varroa destructor. 

Journal of Invertebrate Pathology, 103, S96–S119. http://doi.org/10.1016/j.jip.2009.07.016 

Ruíz-Flores, A., Ramírez-Hernández, E., Maldonado-Simán, E., Palafox-Guillén, J., Ochoa-Torres, 

E., & López-Ordaz., R. (2012). Incidence and infestation level of varroatosis in honeybees 

(Apis mellifera) at the bee identification and diagnosis laboratory from 2002-2006. Revista 

Chapingo Serie Ciencias Forestales Y Del Ambiente, 18(2), 175–182. 

http://doi.org/10.5154/r.rchscfa.2011.03.023 

Runckel, C., Flenniken, M. L., Engel, J. C., Ruby, J. ., Ganem, D., Andino, R., & DeRisi, J. L. (2011). 

Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal 

prevalence of known viruses, Nosema, and Crithidia. PLoS ONE, 6(6). 

http://doi.org/10.1371/journal.pone.0020656 

Ruttner, F. (1982). On the taxonomy of honeybees of tropical Africa. Apiacta, XVII(1), 5–10. 

Ruttner, F. (1988). Biogeography and Taxonomy of Honeybees. Springer- Verlag Berlin 



Reference list 

 

Heidelberg GmbH. http://doi.org/10.1007/978-3-642-72649-1 

Saha, J.C., 1977. Standing Commission of Beekeeping for Rural Development BEEKEEPING FOR 

RURAL DEVELOPMENT, ITS POTENTIALITY AND BEEKEEPING AGAINST POVERTY -

BANGLADESH PERSPECTIVE Beekeeping — Background in Bangladesh. Standing Comm. 

Beekeep. Rural Dev. 139. 

Sammataro, D., de Guzman, L., George, S., Ochoa, R., & Otis, G. (2013). Standard methods for 

tracheal mite research. Journal of Apicultural Research, 52(4), 1–20. 

http://doi.org/10.3896/IBRA.1.52.4.20 

Schmid-Hempel, R., & Tognazzo, M. (2010). Molecular divergence defines two distinct lineages 

of Crithidia bombi (Trypanosomatidae), parasites of bumblebees. Journal of Eukaryotic 

Microbiology, 57(4), 337–345. http://doi.org/10.1111/j.1550-7408.2010.00480.x 

Schmehl, D. R., Teal, P. E. A., Frazier, J. L., & Grozinger, C. M. (2014). Genomic analysis of the 

interaction between pesticide exposure and nutrition in honey bees (Apis mellifera). 

Journal of Insect Physiology, 71, 177–190. http://doi.org/10.1016/j.jinsphys.2014.10.002 

Schwarz, R. S., Bauchan, G. R., Murphy, C. A., Ravoet, J., de Graaf, D. C., & Evans, J. D. (2015). 

Characterization of two species of trypanosomatidae from the Honey Bee Apis mellifera: 

Crithidia mellificae Langridge and McGhee, and Lotmaria passim n. gen., n. sp. Journal of 

Eukaryotic Microbiology, 62(5), 567–583. http://doi.org/10.1111/jeu.12209 

Shchuchinova, L. D., Kozlova, I. V., & Zlobin, V. I. (2015). Influence of altitude on tick-borne 

encephalitis infection risk in the natural foci of the Altai Republic, Southern Siberia. Ticks 

and Tick-Borne Diseases, 6(3), 322–329. http://doi.org/10.1016/j.ttbdis.2015.02.005 

Shen, M., Cui, L., Ostiguy, N., & Cox-Foster, D. (2005). Intricate transmission routes and 

interactions between picorna-like viruses (Kashmir bee virus and sacbrood virus) with the 

honeybee host and the parasitic varroa mite. Journal of General Virology, 86(8), 2281–

2289. http://doi.org/10.1099/vir.0.80824-0 

Shen, M., Yang, X., Cox-foster, D., & Cui, L. (2005). The role of varroa mites in infections of 

Kashmir bee virus (KBV) and deformed wing virus (DWV) in honey bees. Virology, 342, 

141–149. http://doi.org/10.1016/j.virol.2005.07.012 



 

137 

 

Sheppard, W. S., Arias, M. C., Grech, A., & Meixner, M. D. (1997). Apis mellifera ruttneri, a new 

honey bee subspecies from Malta. Apidologie, 28(1), 287–293. 

http://doi.org/10.1051/apido 

Singh, R., Levitt, A. L., Rajotte, E. G., Holmes, E. C., Ostiguy, N., VanEngelsdorp, D., … Cox-Foster, 

D. L. (2010). RNA viruses in hymenopteran pollinators: Evidence of inter-taxa virus 

transmission via pollen and potential impact on non-Apis hymenopteran species. PLoS 

ONE, 5(12). http://doi.org/10.1371/journal.pone.0014357 

Smith, M.L., 2012. The honey bee parasite Nosema ceranae: Transmissible via food exchange? 

PLoS ONE 7, 1–6. doi:10.1371/journal.pone.0043319 

Solignac, M., Cornuet, J. M., Vautrin, D., Le Conte, Y., Anderson, D., Evans, J., … Navajas, M. 

(2005). The invasive Korea and Japan types of Varroa destructor, ectoparasitic mites of the 

Western honeybee (Apis mellifera), are two partly isolated clones. Proceedings of the 

Royal Society B: Biological Sciences, 272, 411–419. http://doi.org/10.1098/rspb.2004.2853 

Somerville, D., 2010. Viruses of honey bees. Primefacts 997, 2. 

Spiewok, S., Neumann, P., & Hepburn, H. R. (2006). Preparation for disturbance-induced 

absconding of Cape honeybee colonies (Apis mellifera capensis Esch.). Insectes Sociaux, 

53(1), 27–31. http://doi.org/10.1007/s00040-005-0829-6 

Spiewok, S., Pettis, J. S., Duncan, M., Spooner-Hart, R., Westervelt, D., & Neumann, P. (2007). 

Small hive beetle, Aethina tumida, populations I: Infestation levels of honeybee colonies, 

apiaries and regions. Apidologie, 38, 595–605. http://doi.org/10.1051/apido 

Stanimirovic, Z., Pejovic, D., & Stevanovic, J. (2002). Hygienic behavior in disease resistance of 

the honeybee ecogeographic varieties (Apis mellifera carnica) from Serbia. Apiacta, (graph 

2), 30–32. 

Strauss, U., Human, H., Gauthier, L., Crewe, R. M., Dietemann, V., & Pirk, C. W. W. (2013). 

Seasonal prevalence of pathogens and parasites in the savannah honeybee (Apis mellifera 

scutellata). Journal of Invertebrate Pathology, 114, 45–52. 

http://doi.org/10.1016/j.jip.2013.05.003 

Strauss, U., Pirk, C. W. W., Crewe, R. M., Human, H., & Dietemann, V. (2015). Impact of Varroa 

destructor on honeybee (Apis mellifera scutellata) colony development in South Africa. 



Reference list 

 

Experimental and Applied Acarology, 65, 89–106. http://doi.org/10.1007/s10493-014-

9842-7 

Strauss, U., Pirk, C. W. W., Dietemann, V., Crewe, R. M., & Human, H. (2014). Infestation rates 

of Varroa destructor and Braula coeca in the savannah honey bee (Apis mellifera 

scutellata). Journal of Apicultural Research, 53(4), 475–477. 

http://doi.org/10.3896/IBRA.1.53.4.10 

Suwannapong, G., Benbow, M. E., & Nieh, J. C. (2011). Biology of Thai honey bees: natural 

history and threats. In R. M. Florio (Ed.), Bees: Biology, threats and colonies. Nova Science 

Publishers, Inc. 

Tentcheva, D., Gauthier, L., Zappulla, N., Dainat, B., Cousserans, F., Colin, M. E., & Bergoin, M. 

(2004). Prevalence and seasonal variations of six bee viruses in Apis mellifera L. and Varroa 

destructor mite populations in France. Applied and Environmental Microbiology, 70(12), 

7185–7191. http://doi.org/10.1128/AEM.70.12.7185 

Tesfay, H. (2014). Honey bee diseases, pest and their economic importance in Ethiopia. 

International Journal of Innovation and Scientific Research, 10(2), 527–535. 

Thompson, H. M. (2003). Behavioural effects of pesticides in bees-their potential for use in risk 

assessment. Ecotoxicology, 12, 317–330. 

Topley, E., Davison, S., Leat, N., & Benjeddou, M. (2005). Detection of three honeybee viruses 

simultaneously by a single Multiplex Reverse Transcriptase PCR. African Journal of 

Biotechnology, 4(8), 763–767. Retrieved from <Go to ISI>://000234261200003 

Traver, B. E., Williams, M. R., & Fell, R. D. (2012). Comparison of within hive sampling and 

seasonal activity of Nosema ceranae in honey bee colonies. Journal of Invertebrate 

Pathology, 109(2), 187–193. http://doi.org/10.1016/j.jip.2011.11.001 

UBOS. (2014). Uganda Bureau of Statistics: Statistical abstract 2014. Kampala: Uganda Bureau 

of Statistics. Retrieved from 

http://www.ubos.org/onlinefiles/uploads/ubos/statistical_abstracts/Statistical Abstract 

2014.pdf. Accessed: August 15, 2016 

UEPB. (2005). Uganda Apiculture Export Strategy. (U. E. P. Board, Ed.)Uganda Apiculture Export 

Strategy. Kampala. 



 

139 

 

van Dooremalen, C., Stam, E., Gerritsen, L., Cornelissen, B., VanderSteen, J., VanLangevelde, F., 

& Blacquiere, T. (2013). Interactive effect of reduced pollen availability and Varroa 

destructor infestation limits growth and protein content of young honey bees. Journal of 

Insect Physiology, 59(4), 487–493. http://doi.org/10.1016/j.jinsphys.2013.02.006 

VanEngelsdorp, D., Hayes, J., Underwood, R. M., & Pettis, J. (2008). A survey of honey bee 

colony losses in the U.S. Fall 2007 to Spring 2008. PLoS ONE, 3(12), 8–13. 

http://doi.org/10.1371/journal.pone.0004071 

Vaudo, A. D., Ellis, J. D., Cambray, G. A., & Hill, M. (2011). The effects of land use on honey bee 

(Apis mellifera) population density and colony strength parameters in the Eastern Cape , 

South Africa. J Insect Conserv. http://doi.org/10.1007/s10841-011-9445-0 

Wasige, J. E. (2009). Assessment of the Impact of Climate Change and Climate Variability on 

Crop Production in Uganda. Kampala: Department of Soil Science, Faculty of Agriculture, 

Makerere University. 

Winfree R, Aguilar R, Vázquez DP, Lebuhn G, Aizen M. A. (2009). Meta-analysis of bees’ 

responses to anthropogenic disturbance. Ecology. 90(8):2068– 2076. 

http://dx.doi.org/10.1890/08-1245.1 

Zander, E. (1909). Tierische Parasiten als Krankheitser- reger bei der Biene. Munchener 

Bienenzeitung 31, 196–204. 

Zhang, Z. (2000). Notes on Varroa destructor (Acari: Varroidae) parasitic on honeybees in New 

Zealand. Systematic & Applied Acarology Special Publication, 5(April), 9–14. 

Zych, M., & Jakubiec, A. (2006). How much is a bee worth? Economic aspects of pollination of 

selected crops in Poland. Acta Agrobotanica, 59(1), 289–299. Retrieved from <Go to 

ISI>://BCI:BCI200600569821 



Curriculum vitae 

 

Curriculum vitae 

 

Personal details  

Name   Moses Chemurot  

Date of birth   25/6/1981  

Nationality   Ugandan 

E-mail    moseschemurot@gmail.com  

  

Education  

2014-2017  Ph.D. candidate, Biology, Ghent University  

PhD thesis: The distribution, infestation levels and effects of honeybee 

parasites and pathogens on colony performance in two agro-ecological 

zones of Uganda.  

Promoter: Prof. Dr. Dirk de Graaf  

2006-2008   Master in Science (MSc) Zoology, Makerere University  

Master thesis: Food consumption and rest time in chimpanzees (Pan 

troglodytes) of Kanyawara community, Kibale National Park, Uganda. 

Supervisors: Prof. Gilbert Isabirye-Basuta and Dr. Eric Sande 

2001-2004   Bachelor in Science (BSc), Makerere University  

1999-2000  Advanced level: Mbale Secondary School: Subjects: Biology, Chemistry, 

Geography and General Paper 

1995-1998 Ordinary level: Sebei Secondary School 

 

Work experience 

Assistant lecturer, Makerere University, Department of Zoology, Entomology and Fisheries 

Sciences (August 2012 to date) 

 Teaching undergraduate students 

 Conducting practical exercises and field work  

mailto:moseschemurot@gmail.com


 

141 

 

 Supervising undergraduate special projects 

 

District entomologist, Adjumani District Local Government (2008 to August 2012) 

 Led in designing and implementing plans to improve beekeeping and carried out 

environmental awareness 

 Spearheaded tsetse control activities using environmentally friendly methods 

 Actively involved in planning for entomology related activities in the district 

 Coordinated Farm Income Enhancement and Forest Conservation (FIEFOC) Project  

 

Research team member, British Petroleum (BP) Conservation Project, Rwanda (2004-2005) 

 Collected data from protected and unprotected conservation sites 

 Participated in environmental sensitization meetings 

 Actively involved in production of research reports  

 

Selected research projects  

1. The Factors Influencing the Distribution of Honeybee Pathogens in Two Selected Agro-

Ecological Zones in Uganda (Ghent University), PhD research funded by Erasmus mundus 

action II (Caribu project) November 2014-June 2017 

2. Potential impact of municipal waste on the health of riverine aqua fauna of River Rwizi, 

Western Uganda (collaboration between Jane Yatuha, Mbarara University; Moses Chemurot 

(Makerere University) and Patrice Kasangaki (National Agricultural Research Organisation) 

funded by Tropical Biology Association in 2014 

3. Food consumption and rest time in chimpanzees (Pan troglodytes) of Kanyawara community, 

Kibale National Park, Uganda (Makerere University) MSc. research, funded by Kibale 

Chimpanzee Project (July 2006-July 2007) 

 

 

 

 



Curriculum vitae 

 

Scientific output 

A1 peer reviewed publications 

1. Chemurot, M., Brunain, M., Akol, A.M., Descamps, T., de Graaf, D.C. 2016. First detection of 

Paenibacillus larvae the causative agent of American Foulbrood in a Ugandan honeybee 

colony. Springerplus. 5(1):1090. doi: 10.1186/s40064-016-2767-3.  

2. Chemurot, M., Akol, A.M., Masembe, C., De Smet, L., Descamps, T., de Graaf, D.C. 2016. 

Factors influencing the prevalence and infestation levels of Varroa destructor in honeybee 

colonies in two highland agro-ecological zones of Uganda. Experimental and Applied 

Acarology. 68(4):497-508. doi: 10.1007/s10493-016-0013-x.  

3. Kasangaki, P., Otim, A. S., Abila, P. P. O., Angiro, C., Chemurot, M., Kajobe, R. (2015). The 

presence of varroa in Uganda and knowledge about it by the beekeeping industry. Journal 

of Apicultural Research, 54(4), 373–377. doi:org/doi.org/10.1080/00218839.2016.1159858 

 

Other peer reviewed publications 

1. Masette, M., Isabirye-Basuta, G., Baranga, D., & Chemurot, M. (2015). Levels of tannins in 

fruit diet of grey-cheeked mangabeys (Lophocebus ugandae, Groves) in Lake Victoria Basin 

forest reserves. Journal of Ecology and The Natural Environment, 7(5), 146-157. 

2. Chemurot, M., Kasangaki, P., Ojja, F., Sande, Eric. and Isabirye-Basuta, G. (2013) Beehive and 

honey losses caused by bush burning in Adjumani District, Uganda. BeeWorld, 90(2), 33-35. 

3. Chemurot, M. (2012). Beekeeping in Adjumani District, Uganda. BeeWorld, 88 (3), 58-61.  

4. Chemurot, M., Isabirye-Basuta, G. and Sande E. (2012). Amount of Plant Foods Eaten and 

Sexual Differences in Feeding among Wild Chimpanzees (Pan troglodytes) of Kanyawara 

Community. International Scholarly Research Network, ISRN Zoology, Volume 2012, Article ID 

120250, 5 pages, doi:10.5402/2012/120250 

5. Kahindo, C.M.N., Barakabuye, N., Chemurot, M., Sande, E. and Nsabagasani, C. (2009). Status 

of the globally endangered Grauer’s Rush Warbler (Bradypterus graueri) in Rugezi Marsh, 

Rwanda. In Society for Conservation Biology (SCB), 1st Meeting of the Africa section.  

 

 

http://www.ncbi.nlm.nih.gov/pubmed/27468390
http://www.ncbi.nlm.nih.gov/pubmed/26801158
http://www.ncbi.nlm.nih.gov/pubmed/26801158


 

143 

 

Book chapter 

1. Kasangaki, P., Chemurot, M., Sharma, D and  R. K. Gupta (2014). Bee Hives in the World, In 

book: Beekeeping for Poverty Alleviation and Livelihood Security, Chapter: 4, Publisher: 

Springer, Editors: Gupta, R.K., Reybroeck, W, van Veen, J.W., Gupta, A. 

 

Participation at conferences (selected) 

1. Chemurot, M., De Smet, L., De Rycke, R. & de Graaf, D.C. 2016-Oral. New Nosema spp. 

detected in honeybee colonies from two highland agro-ecological zones of Uganda: is it an 

emerging threat to beekeeping? Eurbee7 held in Cluj Napoca (Romania). 7th- 9th September 

2016. 

2. Chemurot, M. 2015– oral. Beekeeping as a Conservation tool: Opportunities and Challenges 

in Uganda. First African Primatological Consortium Conservation Conference, Makerere 

University. 15-16th December 2015. 

3. Chemurot, M., De Smet, L., de Graaf, D.C. 2015– oral. Factors influencing the prevalence and 

incidence of two honeybee parasites in two agro-ecological zones of Uganda. Belgian Society 

of Parasitology and Protistology. Aula Janssens Institute of Tropical Medicine Antwerp. 

Thursday 26 November 2015. 

4. Chemurot, M., Akol, A.M., De Smet, L.,  de Graaf, D.C. 2015– oral. New health threats to 

Uganda’s honeybees. 44th APIMONDIA International Apicultural Congress 2015, Apimondia 

19th September 2015.p 214. 

5. Kasangaki, P., Otim, A.S., Abila, P.P., Angiro, C., Chemurot, M. and Kajobe, R. (2015). The 

presence of Varroa in Uganda and knowledge on it by the beekeeping industry. Second TAAG 

Students’ Conference, University of Ghana Accra, Ghana, 9th – 12th June 2015 

6. Chemurot, M., Akol, A.M., Descamps, T., Masembe, C., de Graaf, D.C. 2015. Factors 

influencing the incidence of parasitic Varroa mites in honeybee colonies in two highland agro-

ecological zones of Uganda–poster. International Symposium on Crop Protection, Ghent 

University. May 19th 2015. Communications in Agricultural and Applied Biological Sciences 

Ghent University. 80(2) p. 237. 



Curriculum vitae 

 

7. Chemurot, M., Kasangaki, P., Ojja, F., Sande, Eric. and Isabirye-Basuta, G. (2013) Beehive and 

honey losses caused by bush burning in Adjumani District, Uganda. TAAG African Maiden 

Students’ Conference, National Museums of Kenya, 2nd- 4th July 2013 

 

Participation at workshops and courses (selected) 

1. Training on “Project management”, Ghent University, January 2017. 

2. Primate Research and Conservation Training, Kyoto University, Japan November-December 

2016. 

3. Training on “Effective image editing”, Ghent University 26th October 2016. 

4. Biogazelle qPCR course at Ghent University 20th - 21st October 2016. 

5. Training on Academic posters, Ghent University 11th and 18th April 2016. 

6. Workshop on Designing projects in the field – April 2012, Makerere University Biological Field 

Station, Fort Portal Uganda. (DRECA). 

7. Beekeeping for Poverty Alleviation International Training Program, May-August 2012 Ghent 

University. 

8. Communicating Research Results – June 2011 Kampala, Uganda (DRECA) 

9. Appropriate Techniques in Tsetse and Trypanosomiasis Control –December 2009 Faculty of 

Veterinary Medicine, Makerere University. 

10. Tools and Techniques in delivering Agricultural Advisory Services in Multi-stakeholder systems 

– September 2009 Faculty of Agriculture –Makerere University. 


