92 research outputs found

    Quasi-chemical theory with a soft cutoff

    Full text link
    In view of the wide success of molecular quasi-chemical theory of liquids, this paper develops the soft-cutoff version of that theory. This development has important practical consequences in the common cases that the packing contribution dominates the solvation free energy of realistically-modeled molecules because treatment of hard-core interactions usually requires special purpose simulation methods. In contrast, treatment of smooth repulsive interactions is typically straightforward on the basis of widely available software. This development also shows how fluids composed of molecules with smooth repulsive interactions can be treated analogously to the molecular-field theory of the hard-sphere fluid. In the treatment of liquid water, quasi-chemical theory with soft-cutoff conditioning doesn't change the fundamental convergence characteristics of the theory using hard-cutoff conditioning. In fact, hard cutoffs are found here to work better than softer ones.Comment: 5 pages, 2 figure

    Storage and separation of CO2 and CH4 in silicalite, C168 schwarzite, and IRMOF-1: A comparative study from Monte Carlo simulation

    No full text
    10.1021/la062289pLangmuir232659-666LANG

    Flexibility of Ordered Surface Hydroxyls Influences the Adsorption of Molecules in Single-Walled Aluminosilicate Nanotubes

    No full text
    Single-walled aluminosilicate nanotubes (NTs) are attractive for molecular separation applications because of their highly ordered structure, tunable dimensions, as well as their hydrophilic and functionalizable interiors. These NTs possess a pore surface consisting of an ordered array of silanol groups with flexible hydroxyls. We show that the flexibility of these hydroxyl groups is critical in the adsorption of hydrogen-bonding molecules. Specifically, we study the adsorption of water, methanol, CO<sub>2</sub>, and CH<sub>4</sub> in the NT via grand canonical Monte Carlo (GCMC) simulations. The experimentally observed hydrophilicity of the surface can be captured in adsorption calculations only if the structural and orientational flexibility of the surface hydroxyls is incorporated. The adsorption selectivity of water over methanol is predicted to be larger than 100, which makes aluminosilicate NTs promising for dehydration of alcohols. Flexibility effects are less significant for the adsorption of non-hydrogen-bonding molecules
    corecore