74 research outputs found

    Constructing Modular and Universal Single Molecule Tension Sensor Using Protein G to Study Mechano-sensitive Receptors

    Get PDF
    Recently a variety of molecular force sensors have been developed to study cellular forces acting through single mechano-sensitive receptors. A common strategy adopted is to attach ligand molecules on a surface through engineered molecular tethers which report cell-exerted tension on receptor-ligand bonds. This approach generally requires chemical conjugation of the ligand to the force reporting tether which can be time-consuming and labor-intensive. Moreover, ligand-tether conjugation can severely reduce the activity of protein ligands. To address this problem, we developed a Protein G (ProG)-based force sensor in which force-reporting tethers are conjugated to ProG instead of ligands. A recombinant ligand fused with IgG-Fc is conveniently assembled with the force sensor through ProG:Fc binding, therefore avoiding ligand conjugation and purification processes. Using this approach, we determined that molecular tension on E-cadherin is lower than dsDNA unzipping force (nominal value: 12 pN) during initial cadherin-mediated cell adhesion, followed by an escalation to forces higher than 43 pN (nominal value). This approach is highly modular and potentially universal as we demonstrate using two additional receptor-ligand interactions, P-selectin & PSGL-1 and Notch & DLL1

    Kinetic and structural mechanism for DNA unwinding by a non-hexameric helicase

    Get PDF
    UvrD, a model for non-hexameric Superfamily 1 helicases, utilizes ATP hydrolysis to translocate stepwise along single-stranded DNA and unwind the duplex. Previous estimates of its step size have been indirect, and a consensus on its stepping mechanism is lacking. To dissect the mechanism underlying DNA unwinding, we use optical tweezers to measure directly the stepping behavior of UvrD as it processes a DNA hairpin and show that UvrD exhibits a variable step size averaging ~3 base pairs. Analyzing stepping kinetics across ATP reveals the type and number of catalytic events that occur with different step sizes. These single-molecule data reveal a mechanism in which UvrD moves one base pair at a time but sequesters the nascent single strands, releasing them non-uniformly after a variable number of catalytic cycles. Molecular dynamics simulations point to a structural basis for this behavior, identifying the protein-DNA interactions responsible for strand sequestration. Based on structural and sequence alignment data, we propose that this stepping mechanism may be conserved among other non-hexameric helicases

    Defining single molecular forces required for Notch activation using nano yoyo

    Get PDF
    Notch signaling, involved in development and tissue homeostasis, is activated at the cell-cell interface through ligand-receptor interactions. Previous studies have implicated mechanical forces in the activation of Notch receptor upon binding to its ligand. Here we aimed to determine the single molecular force required for Notch activation by developing a novel low tension gauge tether (LTGT). LTGT utilizes the low unbinding force between single-stranded DNA (ssDNA) and E. coli ssDNA binding protein (SSB) (~4 pN dissociation force at 500 nm/s pulling rate). The ssDNA wraps around SSB and, upon application of force, unspools from SSB, much like the unspooling of a yoyo. One end of this nano yoyo is attached to the surface though SSB while the other end presents a ligand. A Notch receptor, upon binding to its ligand, is believed to undergo force-induced conformational changes required for activating downstream signaling. If the required force for such activation is larger than 4 pN, ssDNA will unspool from SSB and downstream signaling will not be activated. Using these LTGTs, in combination with the previously reported TGTs that rupture double stranded DNA at defined forces, we demonstrate that Notch activation requires forces between 4-12 pN, assuming an in vivo loading rate of 60 pN/s. Taken together, our study provides a direct link between single-molecular forces and Notch activation

    Better biomolecule thermodynamics from kinetics

    Get PDF
    Protein stability is measured by denaturation: When solvent conditions are changed (e.g., temperature, denaturant concentration, or pH) the protein population switches between thermodynamic states. The resulting denaturation curves have baselines. If the baselines are steep, nonlinear, or incomplete, it becomes difficult to characterize protein denaturation. Baselines arise because the chromophore probing denaturation is sensitive to solvent conditions, or because the thermodynamic states evolve structurally when solvent conditions are changed, or because the barriers are very low (downhill folding). Kinetics can largely eliminate such baselines: Relaxation of chromophores, or within thermodynamic states, is much faster than the transition over activation barriers separating states. This separation of time scales disentangles population switching between states (desired signal) from chromophore or population relaxation within states (baselines).We derive simple formulas to extract unfolding thermodynamics from kinetics. The formulas are tested with model data and with a difficult experimental test case: the apparent two-state folder PI3K SH3 domain. Its melting temperature Tm can be extracted reliably by our “thermodynamics from kinetics approach,” even when conventional fitting is unreliable
    • …
    corecore