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Protein stability is measured by denaturation: When solvent conditions are changed (e.g., temper
ature, denaturant concentration, or pH) the protein population switches between thermodynamic 
states. The resulting denaturation curves have baselines. If the baselines are steep, nonlinear, or 
incomplete, it becomes difficult to characterize protein denaturation. Baselines arise because the 
chromophore probing denaturation is sensitive to solvent conditions, or because the thermodynamic 
states evolve structurally when solvent conditions are changed, or because the barriers are very low 
(downhill folding). Kinetics can largely eliminate such baselines: Relaxation of chromophores, or 
within thermodynamic states, is much faster than the transition over activation barriers separating 
states. This separation of time scales disentangles population switching between states (desired sig
nal) from chromophore or population relaxation within states (baselines). We derive simple formulas 
to extract unfolding thermodynamics from kinetics. The formulas are tested with model data and with 
a difficult experimental test case: the apparent two-state folder PI3K SH3 domain. Its melting tem
perature Tm can be extracted reliably by our “thermodynamics from kinetics approach,” even when 
conventional fitting is unreliable. © 2011 American Institute of Physics. [doi:10.1063/1.3607605] 

I. INTRODUCTION 

Protein or nucleic acid denaturation is often approx
imated by a series of transitions between thermodynamic 
states.1–4 In addition to population moving among states, the 
states and the chromophores probing the transitions are sen
sitive to solvent conditions.5 Thus baselines arise even when 
there is no population exchange between states. 

These baselines are fitted traditionally by linear func
tions, adequate if the signal used to probe folding thermody
namics varies slowly along the reaction coordinate.6, 7 If not, 
the baseline can become difficult to separate from the actual 
folding transition. This is particularly true for small proteins, 
where the unfolding transition may be broad due to finite-size 
effects. Schuler and Eaton measured the unfolded state base
line under solvent conditions favoring the native state, show
ing that the baseline is far from linear.8 

Even linear baselines may not always be available experi
mentally: a protein may have a high melting point, preventing 
access to the unfolded state baseline,9, 10 or protein folding 
is measured in a living cell, where high temperatures or de
naturant concentrations cannot be reached without killing the 
cell,11, 12 or a protein mutant may be destabilized, preventing 
access to the full native state baseline.13, 14 

In such cases, kinetics can come to the rescue as long as 
all the activated folding/unfolding events can be resolved. Ki
netics helps because of a separation of time scales. For con
creteness we discuss the two-state scenario in Fig. 1, where 
a temperature jump induces folding. Immediately following 
a jump from  T2 to T1, relaxation of the chromophore and 
within the well is rapid, and creates the unwanted baseline. 

a)Author to whom correspondence should be addressed. Electronic mail: 
gruebele@scs.uiuc.edu. FAX: (001) 217 244 3186. 

Relaxation between wells (dotted arrow “U” to “F” in Fig.  1) 
is slow, and corresponds to the desired population transfer 
among thermodynamic states. If the activation barriers are 
large enough, kinetics can separate the fast relaxation within 
thermodynamic states from the slow transitions among ther
modynamic states. A small kinetic jump automatically sep
arates baseline from folding amplitude. In the same spirit, 
Mücke and Schmid previously proposed distinguishing native 
populations from faster-unfolding intermediates.15 

We derive the necessary equations to allow accurate 
melting temperatures Tm to be measured when baselines 
are incomplete, nonlinear, or noisy. We compare this “ther
modynamics from kinetics” approach with conventional 
thermodynamic fitting, showing that our approach is more 
robust when baselines are incomplete. To do so, we first 
analyze simulated thermodynamic and kinetic data obtained 
from the same model by solving the Smoluchowski equation. 
Next we illustrate the approach by analyzing experimental 
thermal denaturation curves and T-jump kinetics of the small 
two-state folder PI3K SH3 (Ref. 16) labeled by a Förster 
resonant energy transfer (FRET) pair. This is a difficult case 
for conventional thermodynamic fitting: the distance between 
the FRET pair does not increase much when the protein 
unfolds, but the quantum efficiencies of donor and acceptor 
depend on temperature, yielding a small signal relative to the 
baseline. The kinetic approach yields a reliable Tm. 

II. EXPERIMENTAL AND COMPUTATIONAL METHODS 

A. Protein engineering 

The recombinant protein used in this study has 83 
residues of the sarcoma homology 3 domain (SH3) from 
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FIG. 1. Kinetic separation of time scales. Black free energy curves and 
red (light) signal baselines are shown at two temperatures (T1 and T2) as a  
function of the reaction coordinate x. The unfolded portion of the thermal 
population is highlighted (shaded). Upon T-jump, the population rapidly re
laxes within a well (amount .x); this fast relaxation does not populate a new 
thermodynamic state (e.g., F), it merely shifts the thermodynamic state (U). 
Likewise the signal baseline rapidly switches due to chromophore relaxation. 
After the T-jump, the population relaxes much more slowly over the barrier 
(dotted arrow), shifting population between thermodynamic states. 

phosphoinositide 3-kinase (PI3K) plus a two residue N-
terminal extension (GS).16 It is an apparent two-state 
folder with a fast barrier-free initial chain collapse.17 

To remove slow proline isomerization kinetics, the two 
prolines were mutated to G and W residues (under
lined), yielding the sequence GSMSAEGYQY RALY
DYKKER EEDIDLHLGD ILTVNKGSLV ALGFSDGQEA 
KGEEIGWLNG YNETTGERGD FWGTYVEYIG RKKIS. 

The FRET plasmid for PI3K-SH3 was created by ligat
ing the genes for the AcGFP1 FRET donor (Clontech) and 
mCherry FRET acceptor (Clontech) to the 51 and 31 ends, 
respectively. The fusion gene was cloned into the pDream 
2.1 vector (Genscript). A 6-histidine tag was added to the 
N-terminus of AcGFP1 to enable purification on a Ni-NTA 
column for in vitro studies. The plasmid was transformed 
in BL21-CodonPlus (DE3)-RIPL cells (Stratagene) in 2-YT 
(yeast extract-tryptone) media. The transformed bacterial cul
ture was grown at 37 ◦C until the optical density reached 1.0. 
Protein expression was induced using 1 mM isopropyl β-D
1-thiogalactopyranoside (Inalco). After induction, the culture 
was grown at 25 ◦C for 24 to 48 h, followed by centrifugation 
at 10 000 rpm for 10 min. The centrifuged cells were lysed by 
ultrasonication. Cell lysate was run through a Ni-NTA column 
and purified according to the manufacturer’s protocol (Qia
gen). Purity of the protein was determined by electrospray 
ionization mass spectrometry and matrix-assisted laser des
orption/ionization. For both the in vitro thermodynamics and 
kinetics experiments, we used a 5 μM solution of the SH3 
fusion protein. 

B. Thermodynamic and kinetic experiment 

Thermal denaturation and temperature jump kinetics of 
PI3K-SH3 were collected over the 295 to 333 K range on our 
fast relaxation imaging (FreI) instrument, described in detail 

FIG. 2. Kinetic transient at 315 K (red/light dots) and fit (black curve). Pro
tein concentration was 5 μM. The dotted line and arrows indicate the ampli
tude of the resolved kinetic phase as in Fig. 3(a). The rapid rise is the 83 ms 
instrument response. 

elsewhere.12 Briefly, protein solution was placed in an imag
ing chamber whose temperature was controlled by heating 
resistors and monitored with thermocouples. Donor (AcGFP) 
and acceptor (mCherry) fluorescence was imaged indepen
dently onto a CCD camera. As the protein unfolds, the donor 
fluorescence intensity (D) increases relative to the acceptor 
fluorescence intensity (A). Kinetics was initiated by jumping 
the temperature with a programmable 2200 nm diode laser. 
For an apparent two-state folder like PI3K SH3,16 upward 
and downward jumps provide equivalent rate information 
(kobserved(T) = kforward(T) + kbackward(T)). Upward jumps have 
better time resolution and were analyzed here. Figure 2 shows 
an upward jump from T = 313 to 315 K. A correction for 
slow differential bleaching of the AcGFP donor and mCherry 
acceptor was applied by subtracting the small linear down
ward trend in the D/A signal (see Fig. S4 in supplementary 
material26). The instrument response of 83 ms was deter
mined from jumps at room temperature and held constant 
while fitting kinetics at higher temperature. It was about 10 
times faster than the measured relaxation times (Fig. 2). 

The D and A signals of a two-state folder are each linear 
combinations of the folded fraction fF and unfolded fraction 
fU, with coefficients dependent on the FRET efficiency be
tween the green and red chromophores and on chromophore 
quantum yields.12 The ratio D/A eliminates the dependence 
on the donor quantum yield, while Da(T)/A also eliminates 
the dependence on the acceptor quantum yield a(T). D/A is 
strictly speaking a ratio of linear combinations of fF and fU. 
For small folding amplitude changes such as in Fig. 2, D/A is 
proportional to the folding population, so we plot it here for 
fitting. 

C. Computed test data 

To compare conventional fitting of Tm with the 
“thermodynamics from kinetics” approach, we generated sim
ulated thermodynamic melts and kinetic amplitude data as a 
function of temperature from the same free energy model. 
A one-dimensional two-state free energy surface G(x,T) was  
modeled as the sum of two Gaussians with the depth of one 
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well allowed to vary linearly with temperature, similar to the 
schematic in Fig. 1. The signal function, B(x,T) was modeled 
as a Taylor series in x and T. For the case shown in Fig. 4, 
which resembles our PI3K SH3 experimental data, the tem
perature dependence of the signal function was linear. The 
supplementary material26 describes G(x,T) and B(x,T) in de
tail, and shows additional simulation results with nonlinear 
signal functions and near-downhill free energies. 

Thermodynamic curves and temperature jumps were 
computed at approximately 2◦ intervals. The equilibrium pop
ulations ρ(x,T) on the free energy surface G(x,T) were used  
to determine the thermodynamic titration signal B(T) (see  
Eqs. (1) and (2) below). For the kinetic data, 4◦ temperature 
jumps from T1 to T2 were simulated by switching the free en
ergy suddenly from G(x,T1) to  G(x,T2) and allowing the ini
tial population ρ(x,T1) to relax to the final population ρ(x,T2). 
The population relaxation was simulated by Smoluchowski 
dynamics using a singular-value basis method.18 An exponen
tial decay function was fitted to determine the resolved kinetic 
amplitude (indicated by arrow pairs in Figs. 3(a)–3(c)). The 
final temperature after each jump corresponded to a point in 
the thermodynamic titration curve for comparison. 

To assess the effect of noisy data, random Gaussian-
distributed noise was added to the signal function from which 
the thermodynamic melt and kinetic amplitude data were 
computed. The maximum noise level was chosen so that the 
signal-to-noise-ratio of the kinetic traces near Tm would be 
≤2 (see supplementary material26 in Fig. S3(a)); it is unlikely 
that an experimentalist would accept noisier data. 10 thermo
dynamic and kinetic data sets with different pseudo-random 
noise were generated. In the plots of kinetic amplitude vs. 
temperature, all amplitudes with a fitting uncertainty greater 
than the amplitude were set to zero, the others were weighted 
by the uncertainty. Each of the 10 thermodynamic melt or ki
netic amplitude data sets was fitted by least squares to de
termine Tm, and the fit with the best chi-squared (out of 20 
initial parameter guesses) was used. At each noise level, the 
10 “thermodynamic” Tm and 10 “kinetic” Tm were then used 
to compute average Tm and standard deviation of Tm. The dif
ference .Tm between the average Tm and the known Tm of the 
model is a systematic error. The standard deviation is a ran
dom error. The magnitudes of both were summed to represent 
the error by a single value with units of temperature. 

III. THE MODEL 

The fitting procedure discussed here can be used to im
prove accuracy for any denaturation measurement, such as by 
temperature, pH, or denaturant concentration. For concrete
ness, we will consider temperature as our example. Kinetic 
separation of in-well and barrier-crossing dynamics improves 
thermodynamic fitting for two-state or multistate proteins. 
Again for concreteness, we describe the two-state case. 

Consider the model represented in Fig. 3. The free en
ergy along the reaction coordinate x leads to a normalized 
equilibrium population, 

−G(x,T )/RTe
ρ(x, T ) =  . (1)∞ 

−∞ dxe−G(x,T )/RT 

FIG. 3. Comparison of traditional heat denaturation and “thermodynamics 
from kinetics.” (Top) Thermodynamic folded baseline, transition and un
folded baseline. Red labels are defined by the equations in the text. a, b, and 
c label kinetic T-jumps shown in (Middle): at “a,” little population switches 
states, and the resolved phase amplitude (arrows) is small. The initial am
plitude jump is proportional to the baseline slope. At “b,” a large population 
switch between states is resolved (arrows). At “c,” the resolved phase is small 
again. The initial amplitude has switched sign because the baseline slope 
has switched sign. (Bottom) By plotting only the resolved amplitude (solid 
curve), the baselines are reduced and only population changes (maximized 
at b) are selected. Integrating the amplitude curve yields the (unnormalized) 
population as a function of temperature. The melting point of the protein is 
easily identified near the maximum at b, even if the baseline at a or c cannot 
be fully measured. 

The free energy and population depend on tempera
ture (or some other perturbing variable). The signal function 
B(x,T) along the reaction coordinate yields an observed signal 
(e.g., tryptophan fluorescence, IR absorption, FRET, etc.) as 
a function of temperature,  ∞ 

B(T ) = dx B(x, T )ρ(x, T ). (2) 
−∞ 

If the two-state (or n-state) approximation is valid, i.e., 
if the barriers are high enough, we can divide the reaction 
coordinate into states, such as a “folded” and “unfolded” side 
in the two-state case. The optimal dividing surface will lie 
near the barrier at x† in Fig. 1.   †x ∞ 

B(T ) = dx B(x, T )ρ(x, T ) + dx B(x, T )ρ(x, T ) 
−∞ x† 

= BU (T ) fU (T ) + BF (T ) fF (T ). (3) 

Here fU and fF are the unfolded and folded fractions, 
and BU and BF are their signal baselines. The second 
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line of Eq. (3) is obtained by defining fU (T ) 
x= 
† 

dxρ(x, T ) (and fN (T ) accordingly), and setting−∞
xBU (T ) = [ 
† 

dx B(x, T )ρ(x, T )]/ fU (T ) (and BN (T )−∞
accordingly). The observed signal depends on an unfolded 
baseline BU (T ) weighted by the unfolded population, and a 
folded baseline BN (T ) weighted by a folded population. 

The population in state “i” (U or F above) is related to 
the free energy by an equation analogous to Eq. (1), 

−Gi (T )/RTe
fi (T ) =  . (4) 

e−Gi (T )/RT 

For the two-state case, a simple and frequently used 
model for the free energy, equilibrium constant, and popu
lation is the Taylor series expansion19 

(1)(T − Tm
(2)(T − Tm.G = GU − G F = g ) + g )2 · · · , 

−.G/RT Keq
Keq (T ) = e , fF (T ) = , fU = 1 − fF . 

1 + Keq 

(5) 

(1)The goal is to determine the fitting parameters Tm and g
by extracting the population fF (T ) from the measured signal 
B(T ). In particular, linear baselines with adjustable slopes m 
have been used in a vast literature to approximate BU(T) and 
BF(T), 

B(T ) ≈ (BU0 + mU (T −Tm)) fU +(BF0 + m F (T −Tm)) fF . 

(6) 

The problem is that if data cannot be collected to map 
out full baselines, the baseline fitting parameters Bi0 and mi 

cannot be determined accurately. Even if the full baseline is 
observed, it may be steep or nonlinear, and a linear extrapo
lation, for example, of the unfolded baseline into the folded 
region (low temperature) is inaccurate or inadequate.8 The re
sult is that Tm and other fitting parameters cannot be deter
mined accurately. 

Kinetics can help out. If kinetics can be measured that 
capture all well-to-well relaxation events, easily possible 
nowadays with nanosecond temperature jumps,20 the base
line to a significant extent can be separated from the popu
lation change. This is illustrated by Fig. 3: at low or high T 
where only in-well relaxation occurs, kinetics mostly shows 
a sudden jump, due to the baseline. If kinetics is measured 
near Tm, the well-to-well dynamics produce a resolvable 
amplitude. At Tm, the resolved amplitude is largest. Plot
ting the resolved amplitude thus maps out the thermody
namic transition with a peak at Tm (Fig. 3, bottom). The 
amplitude curve can be integrated to yield the population 
curve. 

Mathematically, the kinetic signals just before the jump, 
just after the jump, and at equilibrium long after the jump, are 

B(t = 0−) = BF (T1) fF (T1) + BU (T1) fU (T1), 

B(t = 0+) = BF (T2) fF (T1) + BU (T2) fU (T1), (7) 

B(t = ∞) = BF (T2) fF (T2) + BU (T2) fU (T2). 

Measuring kinetics independently determines the re
solved and unresolved amplitudes 

B(t = ∞) − B(t = 0+) 

= [BF (T2) − BU (T2)][ fF (T2) − fF (T1)], 

B(t = 0+) − B(t = 0−) = [BF (T2) − BU (T2) + BU (T1) 

−BF (T1)] fF (T1) + [BU (T2) − BU (T1)] (8) 

(using fU = 1 − fF ), or 

Bresolved (T ) = A(T )[ fF (T ) − fF (T − .T )], 

Bunresolved (T − .T → T ) 

= [A(T ) − A(T − .T )] fF + C(T,.T ), (9) 

where .T = T2-T1 is the size of the T-jump. Eq. (9), to
gether with a model for the population fF such as Eq. (5), 
constitutes the kinetic fitting model. There are still two 
baseline functions (here A(T ) = BF (T ) − BU (T ) and C(T ) 
= BU (T ) − BU (T − .T )), just as in the thermodynamic fit 
in Eq. (3). Unlike Eq. (3), two data points at each temperature 
constrain the baseline functions and populations, instead of a 
single data point. 

Also unlike Eq. (6), the baseline functions A and C are 
differences between baselines. C is much more likely than the 
original baselines to be approximated by linear functions if 
the temperature jump .T is small. The situation for A de
pends on how different the folded and unfolded baselines are. 
If the folded and unfolded baselines are far apart, or if they 
are nearly parallel, then A(T) is approximately constant. Oth
erwise A(T) still has to be approximated by a linear baseline or 
a polynomial, but at least there is only one function A(T) on  
which the resolved amplitude depends, instead of two func
tions BF(T) and BU(T). 

The following are good approximations when a small 
jump .T is applied   ∂ fF  Bresolved (T ) ≈ .T A(T )  ∂T T −.T/2 

Bunresolved (T − .T → T )     
∂ A  ∂ BU    ≈ .T fF (T − .T ) + .   ∂T ∂TT −.T/2 T −.T/2

(10) 

Bresolved contains a lot of useful information on its own. It 
is proportional to the derivative of the thermodynamic popula
tion curve. Inserting the two-state population model of Eq. (5) 
into Eq. (10) yields 

(1)−g .T Tm
Bresolved (T ) = [A0 + m A(T − Tm)]

R(T − .T/2)2 

(1)(T −−g .T/2−Tm )/R(T −.T/2)e× 
(1 + e−g(1)(T −.T/2−Tm )/R(T −.T/2))2 

. 

(11) 

(1)There are four fitting parameters: g , Tm, A0, mA, includ
ing the last two for the baseline of A. This model requires 2 
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FIG. 4. Model data derived by Smoluchowski dynamics from a two-state 
free energy and signal function. The data were chosen to correspond to a 
“difficult” case, such as FRET with a small protein. (a) Conventional ther
modynamic melt. (b) Resolved kinetic amplitude. (c) Deviation .Tm of the 
fitted from the model melting temperature as function of deleted points in 
the high temperature baseline. (d) Combined random and systematic error 
in the melting temperature as a function of noise added to calculate the data 
in (a) and (b). 

fewer fitting parameters than Eqs. (4) and (5), the standard lin
(1)ear baseline two-state fit, and is expected to yield Tm and g

more reliably. In Eqs. (10) and (11), the  “−.T/2” arise from 
best approximating a finite difference by the derivative at its 
center. 

IV. RESULTS 

A. Fits to simulated data 

To compare the standard thermodynamic fitting (Eq. (6) 
combined with the two-state model in Eq. (5)) with the “ther
modynamics from kinetics” fitting (Eq. (11)), a set of test data 
similar to the PI3K SH3 experimental data was simulated. The 
model Tm was 323 K in both cases. The results are summa
rized in Fig. 4. Panels (a) and (b) show the thermodynamic 
titration and the resolved kinetic amplitude Bresolved. Fig.  4 
corresponds to a “difficult” case very similar to the FRET ex
periments discussed below. In cases like these, a small amount 
of noise can make it difficult to identify the cooperative region 
in a thermal titration experiment. 

The “thermodynamics from kinetics” method works well 
as long as the region of maximum amplitude near Tm is avail
able for fitting, even if there is very little baseline. Panel (c) 
of Fig. 4 shows the deviation of the fitted melting temperature 
from the model value as data points were removed from the 
high-temperature unfolded baseline. This is a common dif
ficulty with in vivo or living cell experiments, where high 
temperature measurements cannot be made.12 The thermody
namic model became unstable quickly as the baseline was re
moved. The kinetics model was able to fit Tm reliably until 
the peak of the resolved amplitude was truncated (removal of 
half of the data points). Analogous results for both models 

were obtained by removing the folded baseline, or by sym
metrically removing both baselines progressively. 

Because experiments do not produce an infinite signal to 
noise ratio, we tested how the thermodynamic and “thermo
dynamics from kinetics” fits performed with varying amounts 
of noise added to the signal function used to generate both 
thermodynamic and kinetic data. “Thermodynamics from ki
netics” generally makes smaller errors than a conventional 
thermodynamic fit at the same noise level. Panel (d) of Fig. 4 
shows the error in Tm as a function of noise level. Two sources 
of error (random and systematic) are included (see Methods). 
The noise level is given relative to the kinetic amplitude at 
Tm in panel (b), so an rms noise of 1 corresponds to a signal-
to-noise ratio of 1. Figure S3 in the supplementary material26 

shows the raw simulated kinetic traces for the lowest nonzero 
noise level and the highest noise level in Fig. 4(c). Even the  
highest noise level yielded a fairly reliable Tm, and it is un
likely that experimentalists would accept noisier kinetic data. 
The thermodynamic data is completely unable to provide a 
reliable Tm when the rms noise approaches 1. 

We carried out additional simulations analogous to 
Fig. 4, discussed in more detail in the supplementary 
material.26 Figure S1 in the supplementary material corre
sponds to an easy case for conventional thermodynamics, 
where the folded and unfolded baselines have different slope, 
so the transition is clearly discernible. Regardless, the kinetic 
model again performed better. Figure S2 illustrates a nearly 
downhill folding case. The barrier crossing rate becomes 
comparable to the intra-well relaxation rate or the barrier 
transit rate (km or ktransit, both estimated experimentally by 
various methods21–24). The “thermodynamics from kinetics” 
approach becomes prone to noise but still outperforms the 
standard thermodynamic analysis. 

B. Fits to experimental data 

To illustrate “thermodynamics from kinetics” with 
real data, we measured the thermal denaturation of the 83 
residue two-state folder protein PI3K SH3, labeled by a 
AcGFP/mCherry donor/acceptor pair at the termini. This is 
a relatively difficult case for thermodynamic fitting: The ter
mini of the small SH3 protein expand from 8 Å (Protein Data 
Bank distance from residue 2 to 82) to only 33 Å (assuming 
a random coil in the unfolded state), compared to R0 = 52 Å 
for the donor/acceptor pair. In addition, the baseline caused 
by the temperature-dependent quantum yields of AcGFP 
and mCherry is large. Thus the presence of noise makes it 
difficult to discern the melting transition (Fig. 5(a)). We also 
measured temperature jump kinetics of PI3K SH3 (Fig. 2) 
and plotted the resolved kinetic amplitude as a function of 
temperature (Fig. 5(b)), yielding the characteristic plot with 
a maximum near Tm. 

The kinetic fit yields a melting temperature of 312 K, 
whereas the conventional thermodynamic fit yields a higher 
317 K. Since the “thermodynamics from kinetics” plot shows 
a very clear peak, whereas the thermodynamic data appears 
almost as a straight line with noise, we believe that the 
kinetics fit provides a better approximation to the melting 
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FIG. 5. Experimental data for FRET-labeled PI3K SH3 protein and model 
fits. (a) Conventional thermal titration experiment and fit with Tm = 316.9 
± 0.2 K. (b) Resolved kinetic amplitude and fit with Tm = 311.8 ± 2.4 K. 

temperature of PI3K SH3. This should hold especially be
cause the folded and unfolded baselines in Fig. 5(a) have 
about the same slope, leading to a cancellation of the slope 
in Eq. (11) so the kinetics can be fitted by only three parame
ters (Tm, g(1) and A0). 

The better quality of the “thermodynamics from kinetics” 
is further supported by Table I. There we show the effect of 

TABLE I. Fitted melting temperatures and free energy parameters by stan
dard thermodynamic fitting and “thermodynamics from kinetics” as a func
tion of upper baseline truncation. The root-mean-square variation of Tm or 
g(1), indicates how consistently parameters can be determined with different 
amounts of baseline. The ± errors are two standard deviations of the mean. 

Thermodynamics Kinetics 

(1) (1)g g
Tm (K) (kJ mol−1 K−1) Tm (K) (kJ mol−1 K−1) 

Data up to 316.9 ± 0.2 1.79 ± 0.92  . . .  . . .  
332 K 
Data up to 317.7 ± 0.2 2.17 ± 0.99 311.8 ± 2.4 0.14 ± 0.02 
323 K 
Data up to 310.3 ± 0.2 > 10a 311.5 ± 2.5 0.14 ± 0.02 
320 K 
Data up to 332.6 ± 0.2 0.55 ± 0.02 311.3 ± 2.7 0.14 ± 0.02 
318 K 
rms variation 9.4 0.7 0.25 0.02 

aAny large value fits the data; this value was not included in the rms variation, which 
would be even larger otherwise. 

truncating the high temperature baseline. The kinetic fit con
sistently returns Tm in the 311-312 K range and g(1) of 0.14, 
with two standard deviation errors to match. The thermody
namic fit varies all over the place, well outside the estimated 
uncertainties. The results in Table I are the lowest chi-squared 
fits out of many initial parameter guesses, to give the thermo
dynamic fit the best chance of finding the smalles chi-squared. 
Unlike the thermodynamic nonlinear least-squares fit, which 
gets trapped in various local minima, the kinetic fit finds the 
same minimum of chi-squared for almost all initial guesses. 

V. DISCUSSION 

The measurement of protein melting temperatures can be 
a challenge when the high temperature baseline is missing, 
or when the baselines are steep. These problems can occur 
in many situations: Some proteins aggregate at high tempera
ture, and need to be measured at low temperature only. Some 
proteins have melting points above the boiling point of the 
solvent.9 And with an increasing interest in folding in living 
cells, or even in vivo, the high temperature baseline may be in
accessible without killing the cell or organism under study.25 

In such cases, it would be nice to have a method for measur
ing protein stability without the need for scanning the whole 
baseline. 

For all of the cases we simulated, we found that the 
method of fitting “thermodynamics from the kinetics” was 
more reliable than conventional thermal melts when baseline 
information is limited. Kinetics eliminates much of the base
line by shifting it into the unresolved phase, whereas the pop
ulation switch among wells falls into the resolved phase. The 
latter yields a nearly baseline-free signal with a peak near Tm, 
although large baselines of opposite sign could shift the peak. 
In the latter case, conventional thermodynamic fitting should 
be at its most effective. 

The “thermodynamics from kinetics” model yields a 
more consistent increase of the error with baseline truncation. 
In Fig. 4(c) (and Fig. S1 in the supplementary material26), the 
conventional fit produces a nonmonotonic error. As further 
data is removed, the unfolded baseline is lost and the ther
modynamic model is unable to fit the melting temperature. In 
contrast, the kinetic fit has a slowly and predictably increas
ing error when its high temperature points are truncated, and 
generally performs well until the truncation reaches the de
naturation midpoint. The fits to experimental data in Table I 
also show that kinetics fitting produces more consistent ther
modynamic parameters and more realistic error estimates. 

We added the equivalent noise mathematically to the ther
modynamics and the kinetics test data. We found that the 
“thermodynamics from kinetics” method is less susceptible 
to experimental noise. This is due to the fact that experimen
tal noise is added to a derivative of the thermodynamic signal 
(T-jump) rather than adding the noise to a smooth function 
and then taking the derivative (thermal melt). 

Ironically, the experimentally relevant noise is often 
worse for the thermodynamic signal than for the time-
resolved kinetic signal, even though the thermodynamic 
signal is collected over a longer time period with more 
signal averaging. In fact, slow data collection can amplify 
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systematic errors such as sample bleaching, laser inten
sity drift, or sample temperature fluctuations during data 
collection. 

The kinetic model can be constrained more easily than 
the thermodynamic model. For a two-state system, the re
solved kinetic amplitudes approach zero away from the melt
ing temperature; for the thermodynamics, the baselines have 
no similar consistent constraint. 

The major drawback of “thermodynamics from kinetics” 
is that all barrier-crossing phases must be resolved. Other
wise, genuine population transfer is lumped together with dy
namics within a single state in the sudden response right after 
the T-jump (or whichever relaxation method is used). Thus 
methods with good time resolution must be employed for the 
measurement. However, if excellent signal-to-noise can be 
achieved, the method is useful right down to the folding speed 
limit (downhill folding). 

In summary, “thermodynamics from kinetics” provides a 
simple formula (Eq. (11)) for fitting the resolved kinetics am
plitude to obtain thermodynamic parameters such as Tm. The  
result is more robust to truncation of the baseline and noise 
than are conventional thermodynamic fits. The only drawback 
is that the kinetics must resolve all barrier crossing events to 
distinguish them from intra-well relaxation and chromophore 
relaxation. 
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