264 research outputs found

    The elements of life and medicines

    Get PDF
    Which elements are essential for human life? Here we make an element-by-element journey through the periodic table and attempt to assess whether elements are essential or not, and if they are, whether there is a relevant code for them in the human genome. There are many difficulties such as the human biochemistry of several so-called essential elements is not well understood, and it is not clear how we should classify elements that are involved in the destruction of invading microorganisms, or elements which are essential for microorganisms with which we live in symbiosis. In general, genes do not code for the elements themselves, but for specific chemical species, i.e. for the element, its oxidation state, type and number of coordinated ligands, and the coordination geometry. Today, the biological periodic table is in a position somewhat similar to Mendeleev's chemical periodic table of 1869: there are gaps and we need to do more research to fill them. The periodic table also offers potential for novel therapeutic and diagnostic agents, based on not only essential elements, but also non-essential elements, and on radionuclides. Although the potential for inorganic chemistry in medicine was realized more than 2000 years ago, this area of research is still in its infancy. Future advances in the design of inorganic drugs require more knowledge of their mechanism of action, including target sites and metabolism. Temporal speciation of elements in their biological environments at the atomic level is a major challenge, for which new methods are urgently needed

    Masālik al-ʿillah in the convention of qiyās: An investigation of its foundations and contemporary Application

    Get PDF
    Magister Artium - MAThis study examines the foundations of the various methods of identifying legal cause (masālik al-ʿillah). It studies its various theories, spanning the classical and premodern period and investigates its application in contemporary times. The investigation analyses the theories of masālik al-ʿillah while placing the legal cause (ʿillah) contextually within the convention of analogical reasoning (qiyās). The findings of this investigation are then used to study practical applications of identifying legal cause, in a selection of three case constructions of qiyas, under the topic of suicide attacks

    Implications of antimicrobial combinations in complex wound biofilms containing fungi

    Get PDF
    Diabetic foot ulcer treatment currently focuses on targeting bacterial biofilms, while dismissing fungi. To investigate this we used an in vitro biofilm model containing bacteria and fungi, reflective of the wound environment, to test the impact of antimicrobials. Here we showed that while mono-treatment approaches influenced biofilm composition it had no discernible effect on overall quantity. Only by combining bacterial and fungal specific antibiotics were we able to decrease the biofilm bioburden, irrespective of composition

    An investigation into a lower temperature and low cost direct reduction process for iron-making.

    Get PDF
    Thesis (M.Sc.Eng.)-University of Natal, Durban, 2003.The blast furnace process for the reduction of iron ore to pig iron faces problems such as emission of air pollutants, high investment cost and the current major problem of decreasing supplies of coke. Coke is used in large quantities to promote a combination of direct and indirect reduction within the furnace. Due to the lack of good coking coal within South Africa, and dwindling supplies worldwide, new iron-making processes, are being developed using coal and/or natural gas to replace coke as the reductant. The new processes allow efficient use of carbon, fed in the form of coal pellets (coalbased processes) or natural gas (gas-based processes), as the reducing agent. Presently, most coal-based processes Use an excess of coal, up to 500% stoichoimetric addition, and are run at temperatures up to ±1200°C, although reduction tends to proceed at ±850°C. This project developed a low temperature process using mixed pellets of fine waste iron oxide and fine domestic coal with a natural carbonaceous binder (a by-product from local pulping industry). Reduction tests performed on composite pellets in a tube furnace and thermobalance indicated, upon analysis by X-Ray Diffraction and Scanning Electron Microscope, that reduction occurred gradually at 900°C. Implementing induction heating of bulk pellets reduced heating times substantially. Induction heating also resulted in direct reduced iron [DRI] containing 75 - 80% metallic iron. Energy consumption based on coal usage amounted to 23.71 GJ/ton DRI, which compares with the calorific consumption of most coal-based processes, i.e. coal consumption range between 15 and 25 GJ/ton DRI. Energy consumed during induction heating amounted to 9.94 GJ/ton DRI, as electricity. This energy consumption value does not take into account the efficiency of the primary energy required to generate electricity

    EXTRACELLULAR BIOFABRICATION OF SILVER AND GOLD NANOPARTICLES: TREASURES FROM THE ABYSSAL ZONE

    Get PDF
    The synthesis of nanoparticles can be accomplished by physical, chemical and biological strategies. Since this has become an expanding area of research in the field of medical sciences and Technology, owing to its potential applications, the need for eco-friendly, non-toxic and economical methods of synthesis have arisen. Biosynthesis of nanoparticles have become the main field of research as it is time efficient, cost effective, less toxic and has abundant resource. This review emphasizes on the biosynthesis of gold (Au) and silver nanoparticles (AgNPs) using marine sources with special reference to algae, their characterisation and its applications. The characterisation of metal nanoparticles is an essential step and can be carried out by various instruments. The various pharmacological, electrical, pest management, parasitology and medical applications of these marine source induced synthesis of nanoparticles have also been portrayed in this review.Â

    An audit tool for relicensing inspection for private hospitals in eThekwini district, South Africa

    Get PDF
    Background: South Africa is moving towards National Health Insurance (NHI), which aims to provide access to universal health coverage for all South Africans. The NHI will only accredit and contract eligible health facilities that meet nationally approved quality standards in the public and private sector. Detailed tools for measuring compliance with the National Core Standards (NCS) and Batho Pele principles have been developed and implemented in the public sector. To date and since its implementation in the public sector, very little is known about the national audit tool and the method used to evaluate quality and patient safety standards in private hospitals in eThekwini district. Objective: The aim of the study was to develop an audit tool for relicensing inspection of private hospitals in eThekwini district based on the clinical domains of the NCS and Batho Pele principles. Methodology: An exploratory sequential mixed method research design was used with a qualitative first phase involving 24 nurse managers through purposive sampling. This was followed by a quantitative phase in which a structured questionnaire was administered to 270 nurses who were randomly sampled for the study from 4 hospitals. Results: The results revealed that the NCS and the Batho Pele principles are not fully implemented or evaluated in the selected hospitals in eThekwini district. Conclusion: These findings were significant and denoted the need for a standardised clinical audit tool for private hospitals in eThekwini district

    Improved Performance by Combining Web Pre-Fetching Using Clustering with Web Caching Based on SVM Learning Method

    Get PDF
    Combining Web caching and Web pre-fetching results in improving the bandwidth utilization, reducing the load on the origin server and reducing the delay incurred in accessing information. Web pre-fetching is the process of fetching the Web objects from the origin server which has more likelihood of being used in future. The fetched contents are stored in the cache. Web caching is the process of storing the popular objects ”closer” to the user so that they can be retrieved faster. In the literature many interesting works have been carried out separately for Web caching and Web pre-fetching. In this work, clustering technique is used for pre-fetching and SVM-LRU technique forWeb caching and the performance is measured in terms of Hit Ratio (HR) and Byte Hit Ratio (BHR). With the help of real data, it is demonstrated that the above approach is superior to the method of combining clustering based prefetching technique with traditional LRU page replacement method for Web caching

    A self-branched lamination of hierarchical patronite nanoarchitectures on carbon fiber cloth as novel electrode for ionic liquid electrolyte-based high energy density supercapacitors

    Get PDF
    This is the peer reviewed version of the following article: Ramu, M., Chellan, J. R., Goli, N., Joaquim, P., Cristobal, V., Kim, B. C., A Self‐Branched Lamination of Hierarchical Patronite Nanoarchitectures on Carbon Fiber Cloth as Novel Electrode for Ionic Liquid Electrolyte‐Based High Energy Density Supercapacitors. Adv. Funct. Mater. 2019, 1906586. https://doi.org/10.1002/adfm.201906586, which has been published in final form at https://doi.org/10.1002/adfm.201906586. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.The developments of rationally designed binder-free metal chalcogenides decorated flexible electrodes are of paramount importance for advanced energy storage devices. Herein, binder-free patronite (VS4) flower-like nanostructures are facilely fabricated on a carbon cloth (CC) using a facile hydrothermal method for high-performance supercapacitors. The growth density and morphology of VS4 nanostructures on CC are also controlled by varying the concentrations of vanadium and sulfur sources along with the complexing agent in the growth solution. The optimal electrode with an appropriate growth concentration (VS4-CC@VS-3) demonstrates a considerable pseudocapacitance performance in the ionic liquid (IL) electrolyte (1-ethyl-3-methylimidazolium trifluoromethanesulfonate), with a high operating potential of 2 V. Utilizing VS4-CC@VS-3 as both positive and negative electrodes, the IL-based symmetric supercapacitor is assembled, which demonstrates a high areal capacitance of 536 mF cm-2 (206 F g-1) and excellent cycling durability (93%) with superior energy and power densities of 74.4 µWh cm-2 (28.6 Wh kg-1) and 10154 µW cm-2 (9340 W kg-1), respectively. As for the high energy storage performance, the device stably energizes various portable electronic applications for a long time, which make the fabricated composite material open up news for the fabrication of fabrics supported binder-free chalcogenides for high-performance energy storage devices.Peer ReviewedPostprint (author's final draft
    corecore