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Which elements are essential for human life? Here
we make an element-by-element journey through
the periodic table and attempt to assess whether
elements are essential or not, and if they are, whether
there is a relevant code for them in the human
genome. There are many difficulties such as the
human biochemistry of several so-called essential
elements is not well understood, and it is not clear
how we should classify elements that are involved
in the destruction of invading microorganisms, or
elements which are essential for microorganisms with
which we live in symbiosis. In general, genes do not
code for the elements themselves, but for specific
chemical species, i.e. for the element, its oxidation
state, type and number of coordinated ligands, and
the coordination geometry. Today, the biological
periodic table is in a position somewhat similar to
Mendeleev’s chemical periodic table of 1869: there
are gaps and we need to do more research to fill
them. The periodic table also offers potential for novel
therapeutic and diagnostic agents, based on not only
essential elements, but also non-essential elements,
and on radionuclides. Although the potential for
inorganic chemistry in medicine was realized more
than 2000 years ago, this area of research is still in its
infancy. Future advances in the design of inorganic
drugs require more knowledge of their mechanism
of action, including target sites and metabolism.
Temporal speciation of elements in their biological
environments at the atomic level is a major challenge,
for which new methods are urgently needed.

1. Introduction
The question ‘Which elements are essential for human
life?’ is frequently asked and seems simple enough

2015 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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to answer. However, the longer you consider it, the more complicated the answer becomes. We
know the sequence of the human genome, and surely all essential elements are coded for—but
are they? And if so, how? Moreover, an element can be both good and bad for life. For example,
there is approximately 80 mg of Cu in the body, and copper, an essential trace element, plays
several roles in human physiology, including the development of connective tissue, bone and
nerve coverings, but chronic copper toxicity, while rare, can lead to liver damage, and acute
copper intoxication can lead to severe gastrointestinal effects [1].

Our answer will also depend on how we define ‘human life’. We live in symbiosis with
microorganisms. Approximately 500–1000 species of bacteria live in the human gut [2] and there
are more than 10 times as many bacterial cells as human cells in the body [3,4]. If these bacteria
have a different requirement for elements than our own cells, do we also call these elements
essential for human life?

The human body contains at least 60 detectable chemical elements, however, only about 25 of
these elements are believed to participate in the healthy functioning of the human body [5]. The
essentiality of additional elements is still in contention, among them arsenic, chromium, boron
and lithium, but most studies have been carried out on laboratory mammals (and may or may
not be applicable to humans) and the ultra-trace levels of some elements that are present in the
body make it difficult to establish their nutritional value [5,6].

Forty to 50 years ago was a period during which nutritionists were carrying out dietary
experiments to determine the essentiality of elements, often using rodents. Such experiments
were expensive and time-consuming, with the need to purify all components of the diet and to
make sure the animals were living under defined conditions. Nutritional researchers included
Schwarz, who is not only credited with discovery of the essentiality of selenium [7–10] but
also investigated the essentiality of many other elements including Sn [11], Si [12] and Cd [13].
Some of his studies showed that despite being considered non-essential, cadmium, for example,
influenced the growth of rats. The growth of weaning rats fed on diets supplemented by Cd at
levels normally found in foods showed a small but consistent increase, e.g. 13% growth increase
for 0.2 ppm Cd2+ sulfate.

Nielsen has discussed the establishment of a recommended daily allowance (RDA) for
elements to safeguard against deficiencies. These include not only proven essential elements
but also elements thought to be beneficial but for which essentiality has not been proved
[14–17]. It can also be argued that nutritional requirements should include consideration of the
total health effects of nutrients, not just their roles in preventing deficiency pathology alone.
Ultratrace elements with health benefits which were thought to merit specific RDAs include
I, Se, Mn, Mo, Cr and B, as well as Co as vitamin B12. Elements with ‘apparent beneficial
intake’ included arsenic, fluorine, lithium, nickel, silicon and vanadium [17–20]. It has also been
suggested that a healthful diet should provide an appropriate intake of Al, Br, Cd, Ge, Pb, Rb and
Sn [18].

Nutritional research on the essentiality of trace elements does not appear to gain such
prominence today. Care has to be taken even when extrapolating the requirements of rodents to
humans because there are differences in their genome sequences, and therefore protein sequences.
The levels of some low molecular weight metabolites (e.g. metal chelating agents such as citrate)
may also change.

This paper is not intended to be a comprehensive review, but attempts to highlight current
knowledge of essential elements and elements useful in diagnosis and therapy and notable
features in their chemistry which relate to their biological activity. We shall find that any code
for an essential element that we can recognize is nearly always a code for a specific species of that
element, often requiring, for a metal ion, recognition of a particular oxidation state, coordination
number, geometry and ligand set.

We travel through the periodic table group by group, starting with group 1 (hydrogen + alkali
metals), followed by groups 2, 3–12 (the transition metals, lanthanides and actinides), 13–17
(p-block elements, mostly non-metals and metalloids) and finally group 18, the noble gases. We
conclude with a list of elements for which there is good evidence of essentiality for humans.
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Perhaps surprisingly, the list is shorter than is believed. The uncertainties in the list will hopefully
stimulate much-needed future research in this field.

2. Group 1: hydrogen and the alkali metals
There is no doubt about the essentiality of hydrogen (Z = 1), the most abundant element in our
universe. Hydrogen can be placed in either group 1 or 17. The proton H+ stands alongside the
alkali metal ions, but hydride H− is also important in the body, not as free ion, but as donated by
the reduced coenzyme nicotine adenine dinucleotide, NAD(P)H.

The control of pH is important in the body. In most body fluids and tissues, the pH is tightly
held at pH 7.4 and it is a sign of distress if there is a significant deviation from this value. The
control of pH is achieved by buffering, for example, by carbonic acid (H2CO3)/bicarbonate in
blood and by proteins. In tumour tissues, the pH can drop to 6–7 [21], in lysosomes to 4–5 [22]
and in endosomes the pH drops to 5.5 and plays a key role in, for example, the release of Fe3+
from its transport protein transferrin [23]. Down the gastrointestinal tract, the pH drops from 6 to
6.5 in the duodenum, to 3.5–7 in the large intestine, to 1–3 in the stomach. The consequences of
this for the speciation of some elements are intriguing (e.g. see fluorine).

Although most of natural hydrogen is protium 1H (99.9885%), there is a small amount of
the heavier isotope deuterium 2H (0.0115% abundant) in everything we eat and drink. The
consequences of kinetic isotope effects for life and the slowing down of biochemical reactions
involving the heavier isotopes are interesting and well recognized in the geochemical world
[24]. Organisms can incorporate lighter isotopes of transition metals preferentially, which may
have consequences for evolution on a long time scale [25]. The pharmaceutical industry uses 2H
in multiple ways, including for kinetic isotope effects which can slow down drug metabolism
(e.g. a C−D bond is cleaved 6–10× more slowly than a C−H bond) [26], for tracing by mass
spectrometry, and in medical imaging [26]. Radioactive tritium (3H, half-life 12.3 yr, β− emitter)
is used as a radiotracer. As far as we know, hydrogen gas is not used by man. However, H2
is an important reductant used by a wide range of bacteria. Hydrogenase enzymes are present
in photosynthetic bacteria, nitrogen fixers, cyanobacteria, strict anaerobes, and Salmonella and
Escherichia coli species.

Lithium (Z = 3) is not thought to be an essential element, but is present, as Li+, in some natural
waters, especially ‘spa’ waters (thermal baths) and in some commercial bottled mineral drinking
water. There is ca 2.4 mg Li in the body.1 Perhaps, it has beneficial effects at these low levels. In
medicine, lithium salts are widely used for treatment of bipolar disorders (BDs). Li+ is a very
small ion (6-coordinate radius 0.76 Å, figure 1) with a high hydration enthalpy (−519 kJ mol−1).

The symptoms of lithium deficiency in humans are believed to manifest primarily as
behavioural abnormalities. A link between low lithium intake and altered behaviour and
aggressiveness has been reported [29–31]. As a medicine, lithium is best recognized for its anti-
manic properties [32]. It is often administered in the form of lithium carbonate, as a psychiatric
drug. More than 2 million American adults, or ca 1% of the population 18 years or older, suffer
from BD [33]. A recent study was conducted on the influence of lithium on the peripheral blood
gene expression profiles of patients with BD [34]. For bipolar patients who responded to lithium,
the genes which protect against cell death (including Bcl2 and IRS2) were upregulated, while
those which promote cell death were downregulated, including the pro-apoptotic genes known
as BAD and BAK1 [34]. These results suggest that increased expression of BCL2 and related genes
is necessary for the therapeutic effects of lithium.

Lithium is an inhibitor of the enzyme glycogen synthase kinase-3β (GSK-3β) which is
responsible for the hyper-phosphorylation of the tau protein in Alzheimer’s disease [33]. A link
between genetic variations in the gene encoding glutamate decarboxylase-like protein 1 (GADL1)
and response to lithium maintenance treatment for bipolar I disorder has been found in patients

1In this article, we have used the data on the abundances of elements in humans given in WebElements:
http://www.webelements.com/ (for a body weight of 80 kg).
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Figure 1. Ionic radii and hydration enthalpies of alkali metal ions [27,28]. These key properties have a major influence on their
different biological activities.

of Han Chinese descent [35]. The two single-nucleotide polymorphisms (SNPs), rs17026688 and
rs17026651, and the GADL1 variant IVS8 + 48delG are useful markers to predict the response to
lithium treatment of patients of Asian descent who have bipolar I disorder.

Sodium (Z = 11) and potassium (Z = 19) are both essential elements that occur at high
concentrations in the body (totals of ca 112 g and 160 g, respectively). Their crucial roles in cellular
homeostasis are well established and they have numerous functions [36]. The biochemistries of
Na+ and K+ are similar although the ions are distinguishable on the basis of their ionic radii (1.02
versus 1.38 Å for 6-coordination) and hydration enthalpies (−406 versus −322 kJ mol−1), figure 1.
There are specific protein pumps for Na+ and K+ in cell membranes (Na/K ATPases), which
can distinguish between the two ions and maintain plasma Na+ at an elevated concentration
(140 mM) and intracellular Na+ at a lower concentration (12 mM), while the reverse is true for
K+ (5 versus 140 mM), generating electrical potential gradients responsible for nervous impulses
[36]. The process of moving sodium and potassium ions across the cell membrane by the
enzyme Na+/K+-ATPase is an active transport process involving the hydrolysis of adenosine
triphosphate (ATP) to provide the necessary energy.

Na+/K+-ATPase controls the transport of three Na+ ions to the outside of the cell and
the transport of two K+ ions to the inside. This unbalanced charge transfer contributes to
the separation of charge across the membrane. The sodium–potassium pump is an important
contributor to the action potential produced by nerve cells. This pump is called a P-type ion
pump because the ATP interactions phosphorylate the transport protein and causes a change in
its conformation. For neurons, the Na+/K+-ATPase can be responsible for up to two-thirds of the
cell’s energy expenditure. Such transport relies on the kinetic lability of bound water molecules
(lifetimes ca nanoseconds, figure 2) which are rapidly stripped off as the ions pass into the channel.

Potassium also has a natural radioisotope, 40K, with an abundance of 0.012%, a β− emitter
with a half-life of t1/2 = 1.3 × 109 yr. There is roughly 0.0169 g of 40K present in a typical human
body, giving ca 266 000 disintegrations per minute, ca 4400 disintegrations per second or 4.4 kBq
of activity [38].

Rubidium (Z = 37) is present in virtually all animal tissues, but is not thought to be essential.
In an average adult (80 kg), there is ca 37 mg of Rb. Similar to potassium, it is present in
large concentrations in muscle tissue, red blood cells and viscera, and is also similar in its
biochemistry [39]. Rubidium-82 which decays by electron capture is an attractive radionuclide
for positron emission tomography (PET). It can be generated without a cyclotron and has fast
serial rest/stress imaging as a consequence of its short half-life (75 s) [40]. It is used clinically for
PET myocardial perfusion imaging (MPI) [41]. A protocol has been developed for simultaneous
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Figure 2. Rates (and lifetimes) of water exchange on metal ions (adapted from [37]). Note the faster exchange on Ca2+

compared with Mg2+ and the very slow exchange on some transition metal ions. However, the rate of exchange can also show
a marked dependence on the other ligands bound to the metal.

measurement of myocardial blood flow (MBF) and MPI using 82Rb high-count-rate PET [40].
This procedure shows low selectivity for individual patient anatomy or injection site making it a
promising tool for obtaining accurate MBF data without loss of image quality [40].

Cesium (Z = 55) is a non-essential, trace element in the body. About 1.6 mg of Cs is distributed
in muscle, bone and blood [42]. 131Cs (electron capture decay, half-life 9.7 days) has found
application in oncology as a treatment for prostate cancer. It is used in brachytherapy, where
radioactive seeds are implanted in or near the tumour, exposing it to a high dose of radiation
while minimizing radiation exposure of healthy tissues (http://www.isoray.com/). A central
nervous system (CNS)-active carborane containing cesium has recently been reported to have an
antidepressant effect on mice [43] by inhibiting pore formation by the cation-selective purinergic
receptor P2X7R ion channel.

3. Group 2: the alkaline earths
Beryllium (Z = 4) is not an essential element (only ca 3 μg in the body) and is best known for the
high toxicity of many of its compounds—especially for its sensitivity and allergic-type responses.
Metal–peptide coordination chemistry appears to play a key role in such immunogenic responses.
Be2+ is a very small ion (4-coordinate ionic radius 0.41 Å) and consequently highly acidic in
water, with a pKa of ca 3.5 for [Be(H2O)4]2+ and a tendency to form polymeric hydroxide-bridged
species.

Allergic attacks are launched by the human immune system when the body is exposed
to certain metal ions through skin contacts, inhalation and metal-containing artificial body
implants [44]. The magnitude of these allergic reactions can range from simple annoyances to life-
threatening systemic illness. Currently, the most widely studied human metal hypersensitivities
are to nickel and beryllium. αβ T cells play a crucial role in these hypersensitivity reactions. Metal
ions (plus their ligands) work as haptens, small molecules that can stimulate an immune response
only when attached to a large carrier such as a protein, binding to the surface of the major
histocompatibility complex (MHC) [45]. This results in a modification of the binding surface of
MHC and activates the immune response of T cells. Metal-specific αβ T-cell receptors (TCRs) are

 on May 21, 2015http://rsta.royalsocietypublishing.org/Downloaded from 

http://www.isoray.com/
http://rsta.royalsocietypublishing.org/






8

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A373:20140182

.........................................................

–O

O

S

CN

N

O–

O

O–

O

O

O–

Sr2+

OH2
OH2

H2O

O

O

O

O
Sr2+

O
O

O

H2O

OH2

H2O

Sr2+

Sr2+

Sr2+

Sr2+ Sr2+

Sr2+

n

3.79n
H2O

Figure 4. The polymeric structure of strontium ranelate. Each monomer unit contains two Sr2+ ions.

amount of Ba2+ may be solubilized by gastric HCl. Barium in Brazil nuts is sometimes a concern.
There is a report of a man consuming a single dose of 179 mg Ba from 92 g of Brazil nuts, with
more than 91% of the dose absorbed [61].

All isotopes of radium (Z = 88) are radioactive. There are ultra-trace amounts in our body with
no beneficial role. Radium-223 dichloride is an α-emitting pharmaceutical (half-life 11.4 days)
approved for treatment of symptomatic bone metastases and castration-resistant prostate cancer
(http://www.xofigo-us.com/index.php (accessed 10 July 2014)). 223Ra2+ is a Ca2+-mimetic that
selectively targets bone metastases with short-range high-energy α particles which cause double-
strand breaks in DNA as well as greatly localized cytotoxicity, with negligible myelosuppression
[76–80]. The activity of 223Ra in vivo has prompted evaluation of its efficiency and safety in clinical
trials of patients suffering from bone-metastatic prostate cancer [77,79,81–84]. It is an effective
candidate for palliation of bone pain.

4. Groups 3–12: the transitions metals

(a) First transition series
Scandium (Z = 21) is not an essential element, but its radioisotopes have potential in PET and
SPECT imaging, as well as therapy [85]. Both 44Sc (t1/2 = 3.93 h, 94% β+, Emax 1474 keV) and
47Sc (t1/2 = 3.35 days, 100% β−, Emax 162 keV) display appropriate properties for diagnosis or
therapy, and, in combination, can be used for theranostic applications. 44Sc is a candidate for PET
imaging using radiometalated peptides or other small targeting biomolecules [86]. Preclinical
evaluations of DOTA-functionalized biomolecules radiolabelled with 44Sc have demonstrated
effectiveness for PET imaging [87]. 44Sc could be a useful radioisotope for clinical nuclear imaging
and pre-therapeutic dosimetry of cancer patients prior to treatment with a therapeutic 177Lu-
labelled DOTA derivative. 47Sc being a β-emitter has potential as a therapeutic radionuclide
and combined with 44Sc would allow use of matching radiopharmaceuticals with the same
pharmacokinetics [87].

Titanium (Z = 22) is not thought to be essential and is best known in medicine as a light,
strong metal in implants, and in anti-cancer complexes, two of which have been on clinical
trials. Mice given TiIV oxalate supplements show positive weight gains and a reduction in
tumour development [88]. Beneficial effects on other animals have also been reported [89,90], and
interestingly titanium compounds, patented as fodder additives, are claimed to improve weight
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gain in domestic animals [91]. Titanium(IV) complexes were the first class of metal compounds
to enter clinical trials after platinum complexes for the treatment of cancer [92]. Budotitane and
titanocene dichloride (figure 5) exhibit anti-tumour activity and low toxicity in several cancer cell
lines [93]. Unfortunately, clinical trials of these compounds initiated in the 1980s were finally
abandoned due their instability in water [92,94]. Since then, other TiIV complexes have been
developed with the aim of overcoming this instability. Among these, titanocene derivatives
and titanium salan complexes show promise [95,96]. The titanium complexes Ti-Salan and
Ti-Y display contrasting behaviour regarding their reactivities with DNA or albumin, their
cellular uptake and intracellular distribution [97]. Ti-Salan shows relatively low binding to
biomolecules but increased serum-dependent cellular uptake while Ti-Y shows lower cellular
accumulation and high binding to albumin and DNA. Biodistribution data indicate that for Ti-
Y transport into nuclei and DNA interactions are crucial whereas mitochondrial targeting is
important for Ti-Salan.

Interest in the essentiality of vanadium (Z = 23) was aroused by the finding about 35 years ago that
vanadate present as an impurity in commercial horse skeletal muscle ATP inhibits the enzyme
Na+/K+-ATPase [98]. Vanadium is thought to be essential for man, but its roles in the body (total
of ca 2.4 mg) are poorly understood. Vanadium complexes have been on clinical trials recently as
antidiabetic agents.
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Genes that code for V are known in some organisms. For example nitrogen-fixing bacteria
such as Azotobacter [99] contain a Fe7VS9 M-cluster in vanadium nitrogenase with vanadium
coordinated to three sulfides, a histidine-N, and two oxygen functions of homocitrate. Hydrated
VIII is present in vanadocytes (blood cells) of sea squirts (Ascidiacea) at a concentration of
350 mM! Mushrooms belonging to the genus Amanita contain amavadin where VIV is coordinated
to two tetradentate N-oxyimino-2,2′-dipropionate ligands. The oxidovanadium(V) H2VO core
is found in vanadate-dependent haloperoxidases from, inter alia, marine algae, coordinated
to an active centre histidine-N. These vanadate-dependent haloperoxidases and vanadium
nitrogenases remain the only identified vanadium-containing enzymes in nature [99].

In vertebrates, particularly humans, VIV and VV are likely to predominate and the similarity
between VV as vanadate and phosphate is likely to be central to its biological effects. Vanadate-
dependent haloperoxidases mimic enzymes involved in phosphate metabolism, where vanadate
blocks the protein binding domain of phosphate. This competitive binding may account for
the insulin-mimetic/insulin-enhancing potential of vanadium compounds. Vanadium complexes
can be used to alleviate insufficient insulin response in diabetes mellitus [100]. They may
not be able to completely make up for the lack of insulin (as in type 1 diabetes), but can
lower dependence on exogenous insulin, or replace other oral hypoglycemic agents, in type
2 diabetes [101]. Both bis(maltolato)oxovanadium(IV) (BMOV) and the ethylmaltol analogue,
bis(ethyl-maltolato)oxovanadium(IV) (BEOV) (figure 6), have undergone extensive pre-clinical
testing for safety and efficacy [101]. BEOV has advanced to phase II clinical trials. These
significant developments in vanadyl insulin mimetics have prompted further research into
the biological applicability of vanadium complexes particularly for pharmacological control
of cancer and diseases triggered by viruses, bacteria, amoebae and flagellate protozoan
parasites [99,102].

In the late 1950s, chromium (Z = 24) was proposed as an essential element. However there is no
reliable current evidence that chromium is essential. No natural proteins in the body are known
to contain Cr and there is no gene that can be said to code for it. Interest in the essentiality
of chromium began with the isolation of a chromium complex from extracts of brewers’ yeast
which enhanced the action of insulin in controlling normal levels of blood sugar [103]. However
this complex, so-called ‘glucose tolerance factor’, thought to contain CrIII and nicotinate and
glutathione as ligands, was never fully characterized. Moreover, the glucose tolerance factor itself
was subsequently shown not to contain Cr [104].

There is still interest in the possible therapeutic effects of Cr, but its beneficial properties
still remain tentative. Today, the US Food and Drug Administration (FDA) recommends a daily
adult intake of about 30 μg Cr per day, despite its essentiality being in question. Vincent recently
concluded that, in fact, Cr has been conclusively shown not to have beneficial effects on body
mass or composition and should be removed from the list of essential trace elements [105].

CrIIItris(picolinate) is widely marketed as a mineral supplement for weightloss and body-
building, although there is concern about possible damage to DNA [104]. CrVI (chromate) is
known to be a genotoxic carcinogen. The toxicity seems likely to arise from redox reactions in cells
which generate CrV 1,2-diolato species (carbohydrates, glycoproteins and sialic acid derivatives)
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which can cause oxidative damage to DNA [29]. A recent study of CrV complexes with a variety
of monosaccharides and the model ligand cis-1,2-cyclopentanediol provided evidence of their
nuclease activity [29]. The CrV complexes can cause oxidative DNA damage without the presence
of added reductants or oxidants, supporting the participation of CrV 1,2-diolato complexes in the
biological activities of both CrVI and CrIII.

There is no doubt that manganese (Z = 25, total body Mn ca 16 mg) is essential, and that there
are genetic codes for a range of Mn enzymes with functions in metabolism, reproduction, the
immunological system, regulation of cellular energy and bone and connective tissue growth.
Manganese as Mn2+ has chemistry similar to Mg2+, although unlike the latter it is redox-active,
with the +3 state also being readily accessible, as in the enzyme mitochondrial manganese
superoxide dismutase. The most abundant Mn-binding protein in the body is glutamine
synthetase which plays a prominent role in brain chemistry (in astrocytes).

However, excessively high levels of Mn in the body can be toxic [104]. Industrial Mn
toxicity is well recognized, as manganism, a neurodegenerative disorder. Manganism results from
overexposure and production of reactive oxygen species and toxic metabolites as well as altered
mitochondrial and ATP functions and exhaustion of cellular antioxidant defence mechanisms
[106]. Mutations in the Mn exporter gene SLC30A10 are associated with motor impairment and
Parkinson’s disease-like symptoms.

An intriguing question is how does Mn cross the blood–brain barrier (BBB)? Despite several
studies on the mechanism of transport of manganese across the BBB, the exact identity of the
carrier is still unclear. Mechanisms using active transport [107] or facilitated diffusion [108,109]
have been suggested, as well the high affinity metal transporters of calcium and iron. Manganese
may also enter the brain via leak pathways in areas without an intact BBB [110]. Overall, it is
likely that more than one transporter is responsible for transport of Mn across the BBB; several of
them may work in a cooperative manner to maintain optimal Mn tissue concentrations.

There is about 4.8 g of iron (Z = 26) in the body and the human genome codes for over 500 Fe-
containing proteins [111]. In eukaryotes and prokaryotes, the level of non-haem iron proteins
is relatively uniform and their relative number in the proteome decreases in passing from
archaea (about 7%), to bacteria (about 4%), to eukaryotes (about 1%) [112]. Several genes are
responsible for haem synthesis, haem transport and insertion of haem groups into haem proteins
[111,113,114]. Particularly intriguing from an inorganic chemistry standpoint, is the presence
of sulfide as a ligand in iron–sulfur proteins [115,116]. H2S itself is best known as a poison.
Fe−S proteins are ubiquitous in cells and play many roles including electron transfer, catalysis
and iron regulation (IRP proteins). Sulfide for Fe−S proteins is generated from cysteine by the
enzyme cysteine desulfurase. Mutations in proteins involved in Fe−S cluster biogenesis are
known to cause at least five distinctive human diseases. Iron–sulfur clusters are also associated
with enzymes involved in DNA processing.

The implications of overload or deficiency of iron have been discussed recently [114]. There
is a need for new oral iron supplements—the most widely used supplement, ferrous sulfate,
was introduced way back in 1832 as a treatment for anaemia. The bioavailability of Fe is
affected by plant foods, including phytate (inositol hexaphosphate), polyphenols and tannins
[117]. Elevated Fe levels seem to play a role in neurodegeneration [118]. In therapy, the Fe(II)
containing compound ferroquine (figure 7), a ferrocene derivative, is currently in phase II clinical
trials [119] for treatment of malaria. It is believed to exert its antiplasmodial properties via
two mechanisms: interaction with free haem and generation of reactive oxygen species [120].
Ferrocifens, complexes containing ferrocene and tamoxifen fragments show promise as potential
drugs for treatment of breast cancer [121]. Superparamagnetic iron oxides composed of nano-
sized crystals are used as magnetic resonance imaging (MRI) contrast agents [122] and sodium
nitroprusside, Na2[FeII(CN)5NO], which slowly releases nitric oxide, has long been prescribed as
a hypertensive agent [123]. Iron overload as in the inherited condition thalessaemia can be treated
with iron chelating agents such as deferoxamine (desferrioxamine B, injectable) or more recently
deferasirox (oral) (figure 7).
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There is only ca 1.6 mg of cobalt (Z = 27) in the body, but it plays a vital role in the coenzyme
vitamin B12 (cobalamin), which has a recommended daily intake of 2–3 μg d−1. A deficiency
of this vitamin results in pernicious anaemia through inactivation of one of two human
enzymes for which B12 is the required coenzyme (methionine synthase and methylmalonyl-CoA
mutase) [124]. Vitamin B12 can be synthesized only by microorganisms (bacteria and archaea). It
contains cobalt tightly bound in a corrin ring and oxidation states +1, +2 and +3 are important in
its biological activity. It was the first organometallic complex to be recognized in man and readily
forms Co−C bonds (to deoxyadenosyl and methyl groups).

Our genome codes for proteins in the digestive tract that selectively absorb B12 from the diet.
Several gene products, including carrier proteins are involved in the absorption and distribution
of vitamin B12 [125]. Altered cellular entry, transit or exit of the vitamin can result in deficiency
and eventually give rise to haematological and neurological disorders [125]. Under physiological
conditions, vitamin B12 is bound to the gastric intrinsic factor (figure 8) and is internalized in
the ileum by a highly specific receptor complex composed of cubilin (Cubn) and amnionless
(Amn) proteins [124,126]. Following exit of vitamin B12 from the ileum, general cellular uptake
from the circulation requires the transcobalamin receptor CD320, whereas kidney reabsorption of
cobalamin depends on megalin.

Perhaps surprisingly, there are few cobalt-based drugs. Doxovir, also known as CTC-96, is
a CoIII bis(2-methylimidazole) acacen derivative which has completed clinical phase I trials for
ophthalmic herpetic keratitis and adenoviral conjunctivitis and clinical phase II trials for herpes
labialis [127]. We can expect CoIII to be reduced to the more labile CoII inside cells.

There is ca 8 mg of nickel (Z = 28) in the body, but it is not clear whether nickel is an essential
element for man or not. Nickel allergy is certainly well known—one of the most common allergies
in the world. Nickel is certainly an essential element for some bacteria.

For vertebrates, no Ni-dependent enzymes are known [128]; however, in microorganisms
several Ni-dependent enzymes have been well characterized. Owing to our symbiotic existence
with microbes (of which there are 10× more than human cells in our body), it is possible that
Ni is essential for the survival of some of the microbes on which we depend for survival [129].
However Ni can also make some microbes virulent. Nickel is a virulence determinant for the
human gastric pathogen Helicobacter pylori which possesses two nickel enzymes that are crucial
for in vivo colonization, [NiFe] hydrogenase (figure 9) and urease, with urease containing 24 nickel
ions per active complex [130]. These two nickel trafficking partners in virulence are potential
novel therapeutic targets for treatment of H. pylori infections which can prevent ulcers from
healing [130].

As for beryllium (vide supra), metal hypersensitivity is also an immune disorder associated
with Ni allergic hyper-reactivity [44]. Approximately 10% of the population suffers from
Ni-contact dermatitis. CD4+ and CD8+ T cells have been identified as the major effector cells
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in nickel hypersensitivity [131]. The chemical basis of Ni sensitivity is also becoming better
understood. Nickel(II) ions act as haptens that bind to the surface of the MHC and peptide
complex, modifying the binding surface of MHC and triggering the immune response of T cells.

Copper (Z = 29) is the third most abundant essential transition metal in the body, a total of ca
80 mg [132]. In eukaryotes and prokaryotes, the size of the copper proteome approaches 1% of the
total proteome [133]. Copper is involved in important biological processes including respiration,
angiogenesis and neuromodulation. The structural basis of the activity of copper enzymes and
chaperones is now becoming well elucidated [134]. Copper proteins are classified as either type 1,
2 or 3 [135]. Type 1 (blue copper sites) function in single electron transfers [136]. In type 2 copper
sites, copper acts as a catalytic centre and binds directly to substrates [135]. Type 3 copper sites
are binuclear and involved in the activation and transport of oxygen [135]. Abnormalities in Cu
homeostasis are thought to play a role in Alzheimer’s, Parkinson’s and motor neuron disease
[137], but Scheiber et al. [134] point out that the full roles of Cu have yet to be clarified.
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permission from [142].

There is about 2.6 g of zinc (Z = 30) in the body, and Zn2+ is involved in nearly all aspects
of molecular and cell biology. Zinc proteins account for about 10% of the human proteome,
ca 3000 zinc proteins with physiological functions [138]. Zinc plays a role in the structure of
proteins as well as in enzymatic catalysis. Its coordination chemistry within proteins has been
widely studied [139]. In some cells relatively high concentrations of zinc can be reached in
vesicles (millimolar, especially in synaptic vesicles in the brain) where it is stored and undergoes
controlled release [140]. With the recognized importance of Zn, Maret has stressed the need for
more knowledge of interactions with biomolecules other than proteins if zinc biochemistry is to
have a major impact on the diagnosis, prevention and treatment of human disease [140].

The functions of cells of all organisms are influenced by daily and seasonal changes due to
the rotation of planets and their orbits around the sun. The predominantly light–dark cycle of the
Earth’s rotation gives rise to an endogenous circadian timing system that synchronizes biological
functions [141]. Period (PER) proteins are essential to the mammalian circadian clock and recently
the crystal structure of a complex comprising the photolyase homology region of mouse CRY1
(mCRY1) and a C-terminal mouse PER2 (mPER2) fragment revealed that zinc is involved in
the stabilization of mCRY1–mPER2 interactions in vivo [142]. Figure 10 shows the zinc binding
site [142].

(b) Second and third transition series
Yttrium (Z = 39) is not an essential element, but is used clinically for cancer treatment as the
radionuclide 90Y, half-life 2.7 days, a pure β-emitter [143]. It can be delivered to cells as a strongly
chelated complex, e.g. (90Y-DOTA-Phe-Tyr)octreotide (SMT487, DOTATOC), figure 11, targeted
to somatostatin receptors (SSTRs). 86Y, half-life 14.7 h, which decays by electron capture, can play
a complementary role to 90Y for PET imaging of the in vivo biodistribution and dosimetry of
therapeutic 90Y pharmaceuticals [144].

An average (80 kg) man contains ca 4 mg of zirconium (Z = 40), but Zr has no known biological
role. We ingest ca 4.2 mg d−1 depending on dietary habits [145]. Use of zirconium for biomedical
applications is steadily growing [146], e.g. in dental implants [147,148], total knee and hip
replacements [149] and middle-ear ossicular chain reconstruction surgery [150]. Like AlIII, ZrIV

readily forms polymeric oxygen-bridged complexes (e.g. Zr–O(H)–Zr bridges) and is widely used
in antiperspirants to coat the skin and prevent escape of (bacterial) body odours [151]. An example
is the glycine, chlorido, hydroxido substance aluminium zirconium tetrachlorohydrex gly (as
named by the International Nomenclature of Cosmetic Ingredients).
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Niobium (Z = 41) is not essential and has yet to be explored widely in therapy. Polyoxometalates
containing NbV are of interest as potential antiviral agents, e.g. heteropolyniobate
[SiW9Nb3O40]7− [152].

Molybdenum (Z = 42) is the only essential trace element in the second and third transition series.
Of the ca 8 mg in the body, the highest concentrations are in the kidney, liver, small intestine
and adrenals [153,154]. The only known chemical form of Mo taken up by cells is the oxyanion
molybdate, [MoVIO4]2−. The human genome codes for four Mo enzymes, in the xanthine
oxidoreductase and sulfite oxidase families, in which Mo is bound at the active site by a special
molybdenum cofactor (molybdopterin, MoCo, figure 12) [155].

MoCo cofactor deficiency due to gene mutations is known, and can lead to rapid
neurodegeneration [156]. In these Mo enzymes, the transfer of oxygen to or from substrates is
catalysed by Mo using water as an oxygen atom donor or acceptor. Molybdenum interconverts
between two oxidation states, MoIV and MoVI. MoCo is synthesized using a highly conserved
multi-step biosynthetic pathway. If this biosynthesis is deficient, then a pleitropic loss of all four
human Mo-enzyme activities can occur, and in most cases is accompanied by early childhood
death [153].
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Molybdate [MoO4]2− is reported to prevent oxidation of lipids and protect antioxidant systems
in experimental diabetic rats, and thus may be useful for treatment of diabetic mellitus [157].
Tetrathiomolybdate [MoS4]2− is a copper chelator of interest in medicine not only for its ability to
lower copper levels [158], but also for treatment of breast cancer and oesophageal carcinoma for
which it is in phase II clinical trials.

Technetium (Z = 43) is man-made, dating back to 1937. The metastable radioisotope 99mTc, a
γ-emitter with half-life of 6 h, is used in tens of millions of single photon emission computed
tomography (SPECT) diagnostic procedures every year. It is readily generated at the bedside from
the longer lived isotope 99Mo. More than 50 99mTc radiopharmaceuticals are currently in use for
imaging and functional studies of various areas of the body, including bone, the brain, thyroid,
lungs, myocardium and liver [159]. The ligands play a crucial role in the targeting properties of
the complexes, e.g. phosphonate and phosphate complexes for bone. By way of current examples,
Cardiolite (99mTc-sestamibi, figure 13) and Neurite (99mTc-disicate) have been approved for folate-
receptor positive tumours [160]. 99mTc-MIP-1404 is in clinical phase II trials for prostate cancer
imaging [161,162].

Two ruthenium (Z = 44) complexes are in clinical trials as anti-cancer drugs. They are both
octahedral Ru(III) complexes. The indazole complex KP1019, trans-[RuCl4(In)2]InH (under
commercial clinical development as the sodium salt NKP-1339 and IT-139, figure 14) is more
cytotoxic to the primary tumour cells than the imidazole complex trans-[RuCl4(Im)(DMSO)]ImH,
NAMI (new anti-tumour metastasis inhibitor)A, which is active against metastases [161,163]. Both
have completed phase I clinical trials [164–169]. Ruthenium(III) from these complexes may be
delivered to tumour cells by the FeIII transport protein serum transferrin, receptors for which
are over-expressed on cancer cells. Once in cells the RuIII may be activated by reduction to RuII,
although RuIV is also accessible under biological conditions. KP1019 induces apoptosis via the
intrinsic mitochondrial pathway. Organometallic RuII arene complexes also exhibit promising
anti-cancer activity [170] and RuIII EDTA complexes have been investigated as NO scavengers
for treatment of septic shock [171].

Complexes of the rare precious metal rhodium (Z = 45) are currently the focus of several studies as
anti-tumour, antiparasitic and antiviral agents [172–175]. The radionuclide 105Rh (β− emitter, half-
life 35.4 h) is useful medically. For example, 105Rh-EDTMP is a promising therapeutic agent for
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treatment of pain due to bone metastases, displaying rapid blood clearance and selective uptake
into bone [176].

As yet, palladium (Z = 46) has found only limited uses in medicine. A Pd-bacteriopheophorbide
(TOOKAD) is a photoactivatable compound that is currently being evaluated in phase III clinical
trials for localized prostate cancer and in phase I/II trials for treatment of small renal tumour
targets [177,178]. It can be activated by long wavelength light (approx. 763 nm) allowing deep
tissue penetration and displaying rapid clearance from the bloodstream [177].

The radionuclide 103Pd (half-life 17 days, decays by electron capture) was introduced for
brachytherapy in 1989 [179]. A study spanning 11 years found that utilization of 103Pd for plaque
radiotherapy of choroidal melanoma resulted in improved visual function when compared to the
use of 125I [180]. Currently, 103Pd is in phase III clinical trials for treatment of early stage prostate
cancer [181,182].

Silver (Z = 47) is best known in daily life for its potent antimicrobial properties. As far back
as the eighteenth century silver was used for wound management [183]. In the form of silver
nitrate, it was employed to treat ulcers [184] and silver ions were identified as antimicrobial in
the nineteenth century. Colloidal silver was approved for wound management by the FDA in
the 1920s [185]. In 1968, silver nitrate was combined with a sulfonamide antibiotic to produce
silver sulfadiazine, a topical antibacterial agent prescribed for burn management that is still in
use [186,187]. Silver-containing wound dressings are often used in lieu of prescription antibiotics
due to the emergence and rise in (organic) antibiotic-resistant bacteria [188]. Acticoat absorbant
is a silver-releasing dressing in phase IV clinical trial for the prevention of lower extremity
revascularization wound complications [189]. Silver nanoparticles are also being evaluated as
antiviral agents [190] and for drug delivery [191].

There is cadmium (Z = 48) in the body (ca 56 mg) and although it is possible that it is essential
at very low doses (see Introduction), it is usually considered to be toxic. Cadmium(II) has a
high affinity for sulfur ligands, e.g. in the protein metallothionein, where it can displace natural
Zn2+ from Zn(Cys)4 sites [192], which may have implications for the cellular toxicity of Cd [193].
Intriguingly, the cadmium-dependent carbonic anhydrase in the marine diatom T. weissflogii [194]
uses Cd as its natural metal cofactor when only low concentrations of Zn are available.

Hafnium (Z = 49) has no known biological role. There is interest in 50 nm diameter spheres of
hafnium oxide functionalized with a negative surface (NBTXR3) [195,196]. NBTXR3 nanoparticles
are taken up efficiently by tumour cells and can enhance the effects of radiation therapy. They are
in phase I clinical development for advanced soft tissue sarcomas and head and neck cancer [197].

Tantalum (Z = 73) is best known for its inertness and hardness as a metal and is commonly used
in implants and bone repair [198,199]. The porosity of Ta provides a scaffold for bone ingrowth
and mechanical attachment [200–202].
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Tungsten (Z = 74) is not essential for man. It is most commonly encountered in biological systems
as WVI in tungstate [WO4]2− [203]. Sodium tungstate has antidiabetic properties. [WO4]2−
can normalize glycemia when administered orally in several types 1 and 2 diabetic animal
models [204–207]. In primary cultured hepatocytes sodium tungstate behaves in a similar
manner to insulin, increasing glycogen synthesis and accumulation [208], and induces a transient
strong activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), in the same way
as insulin. Some oxidoreductase enzymes in bacteria employ W in a similar manner to Mo
[209,210]. Polyoxotungstates are also being studied for a range of other medicinal applications
including antiviral [211], antibacterial [212], anti-cancer [213] and for the treatment of Alzheimer’s
disease [192].

Radioisotopes of rhenium (Z = 75), 188Re (half-life 16.9 d, β− emitter) and 186Re (half-life 3.8 days,
decays by electron capture and β− emission), are used to treat cancer. Colloidal sulfur particles
labelled with 186Re are used in radiation synovectomy in the treatment of rheumatoid arthritis
[214] and 188Re-1,1-hydroxyethylidenediphosphonate (188Re-HEDP) for bone pain palliation in
patients suffering prostate cancer [215]. 188Re P2045 is currently in phase I/II clinical trials for
treatment of small cell lung cancer and other advanced neuroendocrine carcinomas [216]. P2045
is an 11-amino acid somatostatin analogue peptide which has a high affinity for the SSTR [217].
The SSTR is expressed in both small and non-small cell lung cancers [218,219] as well as on
peritumoural blood vessels in numerous malignancies [220,221].

The only current medical use of the precious metal osmium (Z = 76) is injections of aqueous
osmium tetroxide (OsO4) to destroy diseased tissue in chronically inflamed arthritic joints
[222,223]. OsO4 acts as a superoxide dismutase mimic, catalysing the dismutation of the
superoxide which is a primary inflammatory species [224]. Organo-osmium arene complexes
show promise as anti-cancer drugs [225].

Iridium (Z = 77) is used clinically for cancer brachytherapy as the radionuclide 192Ir (half-life 73.8
days, β− emitter), and is currently in phase III evaluation for stage B2 and C prostatic carcinoma
[226] and in phase I/II trials of a GAMMA-Iridium-192 catheter for coronary artery disease [227].
Iridium(III) complexes can act as inhibitors of protein kinases and protein–protein interactions
[228], and photoactive polypyridyl iridium complexes are potential candidates for photodynamic
therapy [229–231]. Organoiridium(III) cyclopentadienyl complexes show promise as anti-cancer
agents (figure 15). Some appear to catalyse the conversion of NADH to NAD+ in cells by transfer
of hydride to IrIII [231].

Currently the most widely used drugs for cancer chemotherapy are platinum (Z = 78)
complexes, now components of approaching 50% of all treatments. The initial drug cisplatin
cis-[PtCl2(NH3)2] (figure 16) originated from the laboratory of Barnett Rosenberg at Michigan
State University in the 1960s, and has now been joined by its analogues carboplatin cis-[Pt
(1,1-dicarboxycyclobutane)(NH3)2] and oxaliplatin [Pt(1R,2R-1,2-diaminocyclohexane)(oxalate)]
which have been approved worldwide. Nedaplatin, lobaplatin and heptaplatin are approved
for use in Japan, China and South Korea [233]. Lipoplatin, formed from cisplatin and
liposomes of dipaomitoyl phosphatidyl, soy phosphatidyl choline (SPC-3), cholesterol and
methoxypolyethylene glycol-distearoyl phosphatidylethanolamine (mPEG2000-DSPE) [234] has
completed phase III clinical trials [234,235]. The highly positively charged Pt2 and Pt3 complexes
of Farrell form an interesting new class of potent agents [236].

There is interest in nanoparticle formulations of platinum drugs that can include built-in
targeting vectors [237,238]. The primary cellular target of platinum drugs is DNA [239], but
there is increasing interest in the role of proteins, especially the copper transporter CTR1 [240].
Platinum(IV) complexes with their low-spin d6 configuration are of interest as pro-drugs which
can be reduced in vivo either chemically (e.g. by thiols or ascorbate) or by irradiation with light
to active PtII species [238,241,242]. Polymer nanoparticles that contain a covalently linked PtIV
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polymer conjugate are stable during circulation, enter target cells by endocytosis, and rapid
intracellular drug release is triggered by the acidic environment [243].

The use of gold (Z = 79) in medicine (chrysotherapy) dates back to ancient times, when Chinese
and Indian practitioners used powered gold to treat many illnesses including arthritis [244]. The
modern application of gold compounds in medicine was prompted by Robert Koch’s discovery
of the tuberculostatic properties of gold cyanide solutions [244,245], and by the (mistaken) belief
by the French physician Forrestier that tuberculosis and rheumatoid arthritis are linked. From
the 1930s, gold(I) complexes including Na3[Au(S2O3)2] (Sanocrysin), aurothiomalate (Myocrisin),
and aurothioglucose (Solganol) have been administered by intramuscular injection, and in
1986 these were joined by the oral drug auranofin (figure 17), (triethylphosphine)gold(I)tetra-
acetylthioglucose) (Ridaura) [244,245]. Aurothiomalate and aurothioglucose are polymeric with
thiolate S atoms bridging Au(I) ions giving linear S–Au–S coordination. The target sites for gold
drugs are likely to be proteins, especially cysteine thiolate sulfur and selenium in selenocysteine,
as in mitochondrial thioredoxin reductase (TrxR) [244].

There is interest in using auranofin for other types of therapy such as anti-HIV, chronic
lymphatic leukaemia and squamous cell lung cancer [245,246]. The potential of gold nanoparticles
(AuNPs) is now being explored with many examples of AuNPs conjugated to peptides or
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antibodies being studied as gene-regulating agents, drug carriers, photothermal therapy agents
and imaging agents [247–250]. Recently, the activity of auranofin against amoebic dysentery has
been discovered [251].

These days, the use of mercury (Z = 80) in therapeutics is declining. In earlier times, Hg was
used to treat syphilis, as an antibiotic and was the active ingredient in diuretics, antiseptics,
analgesics and laxatives [252]. Dental amalgam fillings are about 40% Hg by weight. Thiomersal,
an organomercury compound, has antiseptic and antifungal properties. It was mainly used
as an antimicrobial preservative in vaccines in the mid-twentieth century to prevent adverse
effects such as Staphylococcus infection [253]. It did not reduce the potency of the vaccines
[254]. There is a fear that thiomersal could trigger or cause autism in children, but this has
yet to be proven [255]. Some vaccines not recommended for young children do still contain
thiomersal such as those prescribed for diphtheria and tetanus (http://www.who.int/vaccine_
safety/committee/topics/thiomersal/questions/en/ (accessed 11 August 2014)), and the World
Health Organisation has deemed that there is no solid evidence of toxicity from thiomersal
(http://www.who.int/biologicals/areas/vaccines/thiomersal/en/ (accessed 11 August 2014)).

(c) The lanthanide and actinide elements (group 3+)
Lanthanum (Z = 57) in the form of La2CO3 (Fosrenol) was approved in 2004 for treatment of
hyperphosphatemia [256], an electrolyte imbalance that results in elevated levels of phosphate in
the blood. Hyperphosphatemia is more severe in patients suffering from renal failure as a result
of increased FGF-23 levels, secondary hyperparathyroidism and enhanced progressive vascular
calcification [257]. Fosrenol acts as a phosphate binder, reducing absorption of phosphate through
the formation of insoluble lanthanum phosphate complexes which can then pass through the
grastrointestinal tract unabsorbed [258]. In vitro experiments show that La3+ binds to phosphate
in the pH range of 3–7. Approximately 97% of available phosphate is bound between pH 3 and 5
and 67% at pH 7 in simulated gastric fluid with La3+ in a twofold molar excess over phosphate
(http://www.rxlist.com/fosrenol-drug/clinical-pharmacology.html (accessed 11 August 2014)).

Interestingly, lanthanum, cerium and praseodymium compounds have been used as feed
additives for animal production in China for more than 50 years [259]. It is well documented
that small amounts of these additives can lead to greater weight gain in pigs, cattle, sheep and
chickens [259,260].

Cerium (Z = 58) has bacteriostatic properties; it is effective in the form cerium nitrate against a
wide range of bacteria in a pH-dependent manner. In Escherichia coli, Ce is readily taken up
into the cell cytoplasm, in contrast to mammalian cells, and there is clear inhibition of cellular
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respiration, glucose metabolism and oxygen uptake [261]. A Ce3+ nitrate–silver sulfadiazine
formulation (also known as Flammacerium) has been used for treatment of burn wounds [262].
Cerium nitrate is believed to exert a protecting effect against postburn immunosuppression
caused by a high molecular weight (3 MDa) lipid protein complex [262–265].

The samarium (Z = 62) radionuclide 153Sm (β− decay, half-life 1.9 days) is one of the more
extensively used radiopharmaceuticals and as 153Sm-ethylenediaminetetramethylphosphonic
acid (153Sm-EDTMP) stabilizes pain in patients suffering from osteoblastic metastatic bone lesions
[266]. 153Sm-EDTMP is well tolerated by the body at doses of 37 MBq kg−1 body weight [266],
shows an affinity for skeletal tissue and localizes in the skeleton and areas of increased bone
turnover [267–269]. Subsequent to intravenous dosing, ca 50–60% of this complex is concentrated
in bone within 2–3 h of administration [270], the highest amount reported for bone-seeking
radiopharmaceuticals [271]. It has a small range of emission in bone (1.7 mm), thus limiting
exposure of bone marrow and adjacent tissues to radiation [269,272]. 153Sm-EDTMP is currently
in phase II clinical trials for treatment of high-risk osteosarcoma [273] and breast cancer metastatic
to bone only [274] as well as phase I/II trials in combination with zoledronic acid or pamidronate
for patients suffering from relapsed or refractory multiple myeloma and bone pain [275].

There are only a few examples of the use of europium (Z = 63) in medicine. It has potential as a
PARACEST MRI contrast agent. Paramagnetic metal complexes are often employed as exogenous
contrast agents to reduce the relaxation time of water protons, thus enhancing tissue contrast
in MRI [276]. A europium(III) DOTA-tetraamide complex can act as an MRI sensor of singlet
oxygen (1O2) [276]. This complex forms an endoperoxide derivative upon rapid reaction with 1O2
resulting in a ca 3 ppm shift of the Eu3+-bound water peak through chemical exchange saturation
transfer. This could prove useful for detection of singlet oxygen in cells during photodynamic
therapy. Luminescent Eu3+-doped nanoporous silica nanospheres functionalized with folate
N-hydroxysuccinimidyl ester molecules have been designed to enhance the imaging of cancer
cells [277].

Millions of doses of gadolinium (Z = 64) are now administered every year as contrast agents for
MRI. Gadolinum(III) with its seven unpaired electrons and slow electronic relaxation time is
effective for relaxing H2O protons which can give rise to contrast in MR images. Thanks to the
high thermodynamic and kinetic stability of chelated complexes such as [Gd(DTPA)(H2O)]2−
(figure 18, approved for clinical use in 1988 as gadopentetate dimeglumine, Magnevist) [278] and
[Gd(DOTA)(H2O)]− (Dotarem), they can be safely injected in gram quantities. The large GdIII

ion (radius ca 1.2 Å) can accommodate eight coordinating atoms from the chelating ligand plus
a water ligand which exchanges rapidly with bulk water. There is concern about possible side-
effects arising from any release of Gd(III) (e.g. displacement by Ca(II)) in the body, especially
for less stable contrast agents. Currently, phase IV clinical trials are underway to evaluate Gd
retention in the bones of patients with impaired renal function [279].

The radioisotope of holmium (Z = 67) 166Ho is used as a substitute for 188Re (β− decay, half-
life 19.4 h) due to its suitable characteristics for internal radiation therapy. 166Ho has a half-life
of 26.8 h, and emits high β-energy and low γ-energy which can be easily detected by gamma
cameras [280]. Chitosan functionalized with 166Ho is being used as a cancer radiopharmaceutical
in Korea [281]. Poly(L-lactic acid) microspheres loaded with 166Ho-acetylacetonate are being used
for intra-arterial radioembolization in patients with unresectable liver malignancies [282,283].
These microspheres have already completed phase I trials for treatment of liver metastases [284]
and will begin phase II trials in unresectable liver metastases soon [285].

The ytterbium (Z = 70) radioisotope 175Yb also displays favourable decay characteristics for
therapeutic applications, with a half-life of 4.2 days and a maximum β-energy of 480 keV
[286]. 175Yb-labelled polyaminophosphonates have been evaluated for palliative therapy of bone
metastases [287]. These complexes have high bone uptake with a minimal uptake in soft tissue
and rapid blood clearance. Ytterbium-169 is a γ-emitter with a much longer half-life of 32 days,
and is being explored as a potential therapeutic for intravascular brachytherapy [288].
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Figure 18. The intravenous MRI contrast agent [Gd(DTPA)(H2O)]2−. The paramagnetic 4f7 Gd3+ ion is large (ionic radius 1.2 Å)
and can accommodate eight coordinating atoms from the chelating DTPA ligand and awatermolecule. Exchange of coordinated
water with bulk water is important for producing contrast in the magnetic resonance image.

The 177Lu radionuclide of lutetium (Z = 71), half-life 6.7 days, with its β and γ emissions
can be used for both therapy and SPECT imaging [289,290]. Two radiolabelled anti-epidermal
growth factor receptor (EGFR) antibodies have been assessed for their EGFR-targeting and
radioimmunotherapy efficacy [289]. Both display good tumour uptake and delay tumour growth
significantly. Pretargeted radioimmunotherapy combining 177Lu-IMP-288 peptide and antibodies
can deliver a higher radiation dose to tumours than a directly labelled antibody and is currently
in clinical phase I/II trials for treatment of small cell lung cancer [291].

The radioisotope 225Ac of actinium (Z = 89) which decays by β−, α and β+ (electron capture)
emissions with a half-life of 10 days, is a useful radiopharmaceutical. Its cascade decay
products include 213Bi, also an α (and β−) emitter useful for targeted radiotherapy [292].
Alpha-emitters are appropriate for management of minimal disease, including haematologic
cancers, infections and compartmental cancers like ovarian cancer [293]. Lintusumab-Ac225 is
about to enter phase I/II clinical trials in combination with Cytarabine for older patients with
untreated acute myeloid leukaemia (AML) [294] and actinium-225-labelled humanized anti-CD33
monoclonal antibody HuM195 is completing phase I trials for patients with advanced myeloid
malignancies [295].

5. Group 13: the boron family
As yet there is no convincing evidence that boron (Z = 5) is an essential element for man. In
contrast boron is thought to be essential for the growth and development of vascular plants,
diatoms, marine algae and cyanobacteria [296–298]. It may play a role in the development of
healthy bones and joints, and as a dietary supplement might be effective in preventing or treating
arthritis [299,300]. Boron can stabilize and extend the half-life of vitamin D and estrogen, both of
which are essential to bone health [300].

Boromycin is a polyether-macroclide antibiotic isolated from the Gram-positive Streptomyces
antibioticus bacteria. It kills Gram-positive bacteria by adversely affecting the cytoplasmic
membrane resulting in loss of potassium ions from the cell [301,302]. In vitro studies suggest
that boromycin can inhibit replication of the clinically isolated HIV-1 strain and it may
exert its anti-HIV activity by blocking later stage infection and the maturity step needed for
replication of HIV [303]. Boron-containing compounds are in development as therapeutics
that target not only microbial or neoplastic systems but cell-signalling processes that are
intrinsic to many disorders [304]. Anacor Pharmaceuticals currently has several boron-containing
compounds in development. Borinic picolinate (AN0128, figure 19) is a boronic acid ester
with both anti-microbial and anti-inflammatory activity for acne and mild to moderate atopic
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Figure 19. Two boron-containing drugs on clinical trial [305].

dermatitis (http://www.anacor.com/pdf/AAD_P108.pdf (accessed 10 November 2014)) [306].
AN2690 (Kerydin) is an oxaborale topical antifungal approved by the FDA for treatment of
onychomycosis of the toenails as a result of Trichophyton rubrum or Trichophyton mentagrophytes
(http://www.anacor.com/pdf/Kerydin%20labeling.pdf (accessed 10 November 2014)).

Aluminium (Z = 13) is the most abundant metal by weight in the Earth’s crust and the third most
abundant element after oxygen and silicon. It has no known role in human biology but there
is evidence that Al may be linked to acute and chronic diseases in humans [307–309]. However
problems seem to arise only in cases of kidney failure or if the kidney is underdeveloped (babies).
Then Al absorption into the blood can lead to Al deposition in the brain, to dementia and even
death [309]. Aluminium is present in many commercial products, including cosmetics, and Al
exposure is rising [308].

Aluminium may impair mitochondrial bioenergetics via generation of reactive oxygen species
which in turn leads to oxidative stress. Oxidative stress has been implicated as a factor in
certain neurodegenerative conditions such as Alzheimer’s disease and Parkinson’s disease [307].
Aluminium salts are used as adjuvants in vaccines. Adjuvants are believed to promote immune
responses either through recruitment of antigen professional antigen-presenting cells (APCs) to
the vaccination site for optimal delivery of antigens to APCs or by activation of APCs to make
cytokines and prompting T-cell response [310]. Aluminium salts act by activating the nucleotide
binding domain-like receptor protein-3 (NLRP3) via one of two models of phagocytosis [311].
Aluminium salts are still in use as adjuvants (table 1). Alum (hydrated potassium aluminium
sulfate), while one of the oldest and most common adjuvants used, is now being reconsidered in
vaccine formulations as there are questions about its toxicity [312,313].

Gallium (Z = 31) compounds are used in therapy and in diagnosis [314–316]. The radionuclide
68Ga (half-life 1.1 h, decays by electron capture) can be efficiently generated using a 68Ge/68Ga
generator, removing the need for radiopharmacies to have a cyclotron on site [317]. Its short
half-life makes 68Ga-labelled radiopharmaceuticals popular for clinical use, e.g. tumour imaging
[314,318]. 67Ga (half-life 3.3 days, electron capture followed by γ emission) scintigraphy is
used in oncology to detect malignant tumours in patients [314,319], including Hodgkin’s and
non-Hodgkin’s lymphomas [320].

Gallium nitrate (Ga(NO3)3, Ganite) can suppress the growth of subcutaneously implanted
tumours [314]. It has completed a phase I clinical trial for treatment of children with brain
tumours, neuroblastoma, rhabdomyosarcoma, non-Hodgkin’s lymphoma and refractory solid
tumours [319] and phase II trials in patients with relapsed or refractory non-Hodgkin’s lymphoma
[321,322]. During studies of the antineoplastic activity of GaNO3, it was noted that calcium levels
in blood decreased in many patients [323], prompting investigations into the management of
elevated blood calcium levels associated with cancer [324]. Gallium nitrate is also currently in
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Table 1. Aluminium salts still in use as adjuvants [310].

aluminium salt vaccine
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aluminium phosphate DTaP (Daptacel), DTaP-IPV/Hib (Pentacel), pneumococcal

(PCV13—Prevnar13), Td (Tenivac), Tdap (Adacel)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aluminium hydroxide DTaP (Infanrix), DTaP-IPV (Kinrix), Hep A (Havrix), Hep B

(Engerix-B), human papillomavirus (HPV) (Cervarix), Tdap

(Boostrix)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aluminium potassium sulfate DT, DTaP (Tripedia), Td (Decavac)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aluminium hydroxide, aluminium phosphate DTaP-HepB-IPV (Pediarix), Hib (PedvaxHIB)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

potassium aluminium sulfate, amorphous aluminium

hydroxy phosphate-sulfate

Hib/Hep B (Comvax), Hep B (Recombivax)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

amorphous aluminium hydroxy phosphate-sulfate Hep A (Vaqta), HPV (Gardasil)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aluminium phosphate+ aluminium hydroxide Hep A/Hep B (Twinrix)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

phase I clinical trials for patients suffering from cystic fibrosis [325]. Non-redox-active Ga3+ can
inhibit (redox-active) Fe(III)-dependent pathways, including iron pathways in bacteria [326].

Indium (Z = 49) has no known biological role in humans. The radionuclide 111In, a γ-emitter with
a half-life of 2.8 days, is used in clinical diagnostic imaging. For example, 111In-CHX-A DTPA
Trastuzumab (Indium-Herceptin) is about to enter clinical trials for imaging breast cancer [327]
and a phase II trial is evaluating the side effects of administration of 111In ibritumomab tiuxetan
in combination with 90Y ibritumomab tiuxetan, rituximab, fludarabine, melphalan for stem cell
transplants in patients with B-cell non-Hodgkin lymphoma [328].

Thallium (Z = 81) is best known for its toxicity, especially as Tl+ when it can interfere with K+
pathways (sometimes called ‘super-potassium’). The isotope 205Tl (70% abundant, nuclear spin
1/2) is sensitive for NMR detection. 201Tl (half-life 73 h) which decays by electron capture is used
in radiodiagnostic imaging (SPECT).

6. Group 14: the carbon family
Carbon (Z = 6) makes up 18.5% of the body and is the second most abundant element in humans,
where its oxidation states range from +4 (CO2, bicarbonate) to −4 (hydrocarbons). We will not
discuss the ‘organic’ chemistry of life and medicines here which is, of course, extensive, but just
mention recent biological and medical interest in carbon monoxide.

The body produces about 3–6 ml of CO per day from the breakdown of haem by the
enzyme haem oxygenase. Since carbon monoxide is a natural metabolite with signalling functions
in the body, it is of interest as a drug [329]. In particular, metal carbonyl complexes such
as [Ru(CO)3Cl(glycinate)] (CORM-3) hold potential as carbon monoxide releasing molecules
(CORMs) for the transport and delivery of CO to target sites. Such drug use may be protective
against transplant organ rejection, inflammation, and endothelial oxidative damage, and perhaps
provide antibiotics to combat infection [330,331].

Silicon (Z = 14) is present at significant levels in humans (total ca 21 g), but it is unclear if this
element is essential to our function or not. No specific genes coding for Si are currently known for
humans. Some fibrous silicate asbestos minerals are known to be health hazards [332].

Over the last three decades, much research has gone into ascertaining the importance of Si in
our bodies. Silicon may be essential for bone formation [333], for synthesis of collagen and its
stabilization, and matrix mineralization [333]. The ingestion of bioavailable silicon may increase
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Figure 20. Structures of the photosensitizers Pc4 and purlytin.

bone mineral density, and Si supplementation in both animals and humans has a direct positive
effect on bone density and strength [334].

A silicon-containing phthalocyanine (Pc4, figure 20) is a second generation photosensitizer
currently in clinical trials, and can kill tumour cells and lymphoid cells via apoptosis [335,336]. Pc4
has completed phase I clinical trials for photodynamic therapy of patients with actinic keratosis,
Bowen’s disease, skin cancer, or stage I or stage II mycosis fungoides [337–339] and is entering
phase I clinical trials for photodynamic therapy in stage IA–IIA cutaneous T-cell non-Hodgkin
lymphoma [340].

There is no evidence to support the essentiality of germanium (Z = 32) for man; however,
germanium-containing preparations are sold as health elixirs and with claimed benefits for
several illnesses including cancer and AIDS [341,342]. Cases of renal failure and even death,
nephropathy, anaemia, myopathy and gastrointestinal disturbances have been reported after
germanium intoxication [342,343], although the mutagenicity, carcinogenicity and teratogenicity
of germanium compounds appear to be generally low. [344]. Bis-2-carboxyethylgermanium
sesquioxide (Ge-132) is of current interest in relation to the treatment of cancer, burns, hepatitis
and some cardiovascular diseases [345,346].

Forty years ago, tin (Z = 50) was thought to be essential for the growth of animals and predicted
to be essential for humans, but now there is little evidence that this is the case. We are widely
exposed to tin through dinnerware and the cans used food packaging, and there are trace amounts
of tin in the body (ca 16 mg). The only current use of Sn in clinical medicine is in the photodynamic
therapy agent purlytin (Rostaporfin, SnIV ethyl etiopurpurin). Purlytin (figure 20) underwent
clinical trials for different cancers, curtaneous basal cell cancer, kapososis sarcomas in AIDS
patients and for breast metasteses in the chest wall [347]. Many organotin compounds have
anti-cancer and antiviral activity, but none has reached clinical trials [348–352]. Recent examples
include tri-nbutyltin(IV)lupinylsulfide hydrogen fumarate which is active against leukaemia and
melanoma in vitro and in vivo.

In general, lead (Z = 82) is very toxic to humans. If inhaled or ingested, it can affect the nervous
system, and long-term exposure can result in a plethora of adverse effects including anaemia,
nephropathy, colic-like abdominal pains and brain damage [353–355]. In adults, almost 99% of
absorbed lead accumulates in erythrocytes for between 30 and 35 days allowing it to be dispersed
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to soft tissues such as the liver, aorta, brain, lung and spleen [356]. Organo-lead compounds
such as alkyl-PbIV compounds are metabolized to neurotoxic metabolites. Formation of these
metabolites is catalysed in the liver by cytochrome p450-dependent monooxygenases [356]. Lead
inhibits the steps in haem synthesis catalysed by ALA dehydratase and ferrochelatase.

The radioisotope 212Pb (half-life 10.6 h, β− emission, rapidly generating the α-emitter 212Bi) is
of interest for targeted α-particle therapy and radioimmunotherapy [357–359]. The decay leads to
the emission of two short-lived α-particles that have strong therapeutic activity on cellular nuclei
[357]. The radiolabelled compound 212Pb-TCMC-trastuzumab shows promising pre-clinical anti-
tumour activity, binding to the extracellular domain of human epidermal growth factor receptor
2 (HER2). HER2 is a tyrosine kinase receptor that is overexpressed on the cell surface of many
different cancer cell types, and upon internalization 212Pb then delivers a dose of α-radiation [360].

7. Group 15: the nitrogen family (pnictogens)
The human body is ca 3% (total ca 2 kg) nitrogen (Z = 7), present in many biomolecules including
amino acids, proteins, nucleobases, RNA and DNA, making it an essential element. A wide range
of oxidation states are important in N biochemistry ranging from −3 (NH3) to +5 (nitrate).

The inorganic chemistry of nitric oxide (NO) has attracted recent attention. This reactive
free radical is an important signalling molecule in the body, responsible for regulation of
numerous biological processes including neurotransmission, smooth muscle contraction and
immune reactions [361]. It is produced via conversion of L-arginine to L-citrulline by nitric
oxide synthases (NOS) using NADPH and oxygen (scheme 1) [362]. Three NOS isoforms have
been identified, endothelial (eNOS), neuronal (nNOS) and inducible (iNOS) [363]. Neuronal
NOS is responsible for producing NO in nervous tissue and is involved in cell communication,
eNOS generates NO in blood vessels and participates in vasodilation, and iNOS is located in
the cardiovascular and immune systems and upon stimulation by proinflammatory cytokines
produces large quantities of NO [363].

13N is a positron emitting isotope used in PET imaging. It has an extremely short half-
life of 10 min and is therefore generated onsite in cyclotrons. 13N-ammonia has been in use
since the 1970s for cardiac PET imaging [364]. It is administered by injection and exists as an
equilibrium mixture of 13NH3 (minor) and 13NH+

4 (major) in the bloodstream [365]. The neutral
13NH3 molecule can easily diffuse across plasma and cell membranes and once inside myocytes
re-equilibrates with its protonated form which is then trapped in glutamine via the enzyme
glutamine synthase [365]. Toxic ammonia is converted into urea which is excreted by the kidneys,
via the urea cycle involving six enzymes and two mitochondrial transporters.

There is ca 0.9 kg of the essential element phosphorus (Z = 15) in the body, up to 90% of
which is in apatite in bones and teeth and the rest in extracellular fluids and soft tissue [366].
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Phosphorus(III) has a well-established chemistry but is too strong a reductant to be found in
most living organisms. Phosphorus(V) plays a major role in biological molecules, particularly
in phosphate diester linkages in the structural framework of DNA and RNA. Polyphosphate
esters are used by living cells for transport of cellular energy, especially ATP. Disruption of
phosphorus homeostasis in the body can have detrimental consequences. Hypophosphatemia,
low levels of phosphate in serum, has been suggested to lead to rhabdomyolysis, respiratory
failure, haemolysis and cardiac failure [367]. Hyperphosphatemia (increased levels of phosphate
in serum) has been linked to chronic kidney disease [368].

Bone formation from cross-linked collagen, osteocalcin and osteopontin proteins together
with an equal amount of calcium phosphate mineral is carefully controlled in osteoblast cells.
Osteoblast cells break down bone as part of the continual dynamic remodelling and repair
processes. Phosphorus-32 (half-life 14.3 days) is a β-emitting radionuclide used in therapeutic and
diagnostic oncology as well as general biochemical tracing. It is used for detection of malignant
tumours, as cancer cells accumulate more phosphate than normal cells [369]. Phosphocol P32
is a 32P radiolabelled drug that is used to treat different cancers and as a therapeutic for
cancer-related effects such as fluid build-up in the pleura or peritoneum (http://www.mayocli
nic.org/drugs-supplements/chromic-phosphate-p-32-injection-route/description/drg-20062817
(accessed 26 August 2014)).

Arsenic (Z = 33) is probably most widely known for its poisonous effect in humans. Symptoms
of acute arsenic poisoning include diarrhoea, vomiting, blood in the urine, cramping muscles
and eventually, death. Arsenic is an ultra-trace element in the body and normal blood levels in
humans are 4–30 nM with a half-life of ca 2 h [370]. Chronic arsenic exposure is a serious problem
in many parts of the world [371]. When elevated levels of As are consumed, it is enzymatically
converted to monomethyl- and dimethyl-arsenic species by arsenite methyltransferase (encoded
by the As3MT gene), primarily in liver cells [372] and rapidly excreted in the urine. Arsenate
decreases ATP levels by unravelling its synthesis through a biochemical phenomenon known as
arsenolysis and produces AsIII. Arsenic(III) has a high affinity for thiols and can inhibit enzymes
such as pyruvate dehydrogenase [373].

Despite its toxic reputation, arsenic compounds do have some therapeutic efficacy and
were employed as far back as the eighteenth century when a potassium bicarbonate-based
solution of arsenic trioxide (As2O3) (figure 21) known as Fowler’s solution was prescribed
for a variety of illnesses [374]. Salvarsan and Neosalvarsan were used in the early twentieth
century as antibiotics to treat syphilis [375]. Arsenic trioxide (As2O3) is an approved drug
for management of promyelocytic leukaemia [376,377] and is in clinical trials for treatment
of several other cancers including unresectable hepatocellular carcinoma and non-small-cell
lung cancer [378,379]. In water, As2O3 forms As(OH)3 which can enter cells via glycerol
transport pathways (aquaglyceroporins). Melarsoprol is an organoarsenical that is used to
treat trypanosome infections in Africa [380]. Darinaparsin, S-dimethylarsino-glutathione, is
undergoing clinical trials as a cancer therapeutic [381,382]. This drug is able to induce greater
intracellular arsenic accumulation and cell death in vitro with lower systemic toxicity compared
to arsenic trioxide [383].

Antimony (Z = 51)-containing compounds have been used in medicine for centuries. The most
significant application is the use of organoantimonials for the treatment of leishmaniases
[384,385]. Antimony(III) potassium tartrate was prescribed in the early twentieth century for
muco-cutaneous leishmaniasis and visceral leishmaniasis [384]. Unfortunately, there were severe
side effects and less toxic SbV compounds were introduced in the 1940s [384]. Two formulations
are still in use for leishmaniasis therapy, meglumine antimoniate (Glucantime) and sodium
stibogluconate (Pentostam). It is proposed that SbV is a prodrug, reduced to SbIII by the parasite
or host cell [386]. The target of these antimonials is believed to be trypanothione, a low molecular
weight thiol abundant in the Leishmania parasite [387]. Along with trypanothione reductase,
trypanothione affords an intracellular reducing environment to circumvent oxidative stress thus
ensure parasite survival [387,388]. Experimental studies point to SbV being reduced to SbIII
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FAD

NADPH

Thr335
Glu466

His461
Sb

Cys52
Cys57

Figure 22. Reduced trypanothione reductase from Leishmania infantum bound to NADPH and SbIII. SbIII is coordinated to the
two redox-active catalytic cysteine residues (Cys52 and Cys57), Thr335 and His461 [389]. Reprintedwith permission fromBaiocco
P, Colotti G, Franceschini S, Ilari A. 2009 J. Med. Chem. 52, 2603–2612. Copyright c© 2009 American Chemical Society.

intracellularly followed by binding of SbIII to trypanothione to form a complex that can then
inhibit trypanothione reductase via thiolate exchange (figure 22) [388].

Prolonged exposure to antimony is a risk for people working in metal mining, smelting and
refining, refuse incineration, coal-fired power plants and indoor firing ranges and may result in
respiratory irritation, pneumoconiosis, antimony spots on the skin and gastrointestinal symptoms
[390]. In a therapeutic setting, toxic side-effects of antimonials are cardiotoxicity and pancreatitis
both of which are commonly observed in HIV and visceral leishmaniasis co-infections [390].

Bismuth (Z = 83) compounds have long been used as antibacterial agents and are common today
as a medication to eliminate Helicobacter pyroli, a Gram-negative bacterium that is the causative
agent of gastrointestinal illnesses such as peptic ulcers [391]. Colloidal bismuth subcitrate (De-
Nol) and bismuth subsalicylate (Pepto-Bismol) are used for prevention and treatement of gastric
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and duodenal ulcers [392,393]. Sulbogin is a topical ointment used for wound healing, and
contains bismuth subgallate as one of its main components [394]. Bismuth subgallate acts through
activation of the Hageman factor (factor XII) in the clotting cascade to quicken coagulation [395].
Bi3+ is a highly acidic metal ion (pKa of aqua complex ca 1.5) and often forms polymeric
complexes with hydroxide or oxide bridges, or citrate bridges in the case of bismuth subcitrate.

Interest in bismuth compounds as anti-cancer agents is growing due to the observation that
administration of bismuth prior to chemotherapy can decrease the toxic side-effects associated
with cisplatin [396,397]. Bismuth-213 is an α-emitter with a half-life of 45.6 min, prepared for
clinical use from a 225Ac/213Bi generator. A phase I trial of 213Bi-lintuzumab demonstrated that
administration of the radiopharmaceutical was safe up to 37 MBq kg−1 in patients with relapsed
or refractory AML [398]. The phase I/II trial of sequential administration of cytarabine and 213Bi-
lintuzumab for α-targeted radiotherapy in patients with AML found that 213Bi-lintuzumab gave
rise to remissions in patients [399].

8. Group 16: the chalcogens
Oxygen (Z = 8), the third most abundant in the universe (after H and He) and most abundant
element in the Earth’s crust by weight, is vital as O2 to support cell respiration. We breathe air
that is 21% O2 by volume. Over half our body mass is oxygen (49/80 kg). Ground state O2 is a
triplet (3O2) and relatively unreactive, even though a strong oxidant. Excited state singlet oxygen
(1O2) in contrast is highly damaging and can kill cells (the basis of photodynamic therapy). The
oxidation states of oxygen in the body range from 0 (O2) to −2 (H2O).

Oxygen homeostasis is crucial for survival of all vertebrates. Our bodies have evolved to
ensure optimal oxygenation of all our cells, starting with entry through our lungs and then
circulation and delivery of oxygen within the body [400]. Oxygen is a critical electron acceptor
in redox reactions that lead to the production of ATP, the direct source of energy needed for
cell function [401]. Oxygen is also an important substrate for manufacture or decomposition
of many cellular components, including signalling mediators [401]. Hypoxia (lack of oxygen)
is an important factor in development of severe pathologies including myocardial and cerebral
ischaemia and cancer [400]. Hyperoxia (excess supply of O2 in tissues and organs) can also have
detrimental consequences such as production of high concentrations of reactive oxygen species
(ROS: 1O2, O2

−, H2O2, OH.), disrupting the balance of oxidant and antioxidants and causing
damage to cells and tissues [402].

Understanding the role of ROS species for signalling in the body is an important area of
research [403]. Apart from its role as a destructive oxidant to ward off pathogens, H2O2 fulfils the
role of ‘secondary messenger’: its enzymatic production and degradation as well as requirement
for the oxidation of thiols give rise to the conditions appropriate for signalling [403]. The
hypoxia-inducible factor (HIF) is a transcription factor that reacts to pathophysiologically low
levels of oxygen via upregulation, setting off biological responses to hypoxia [404]. The HIF
prolyl hydroxylase domain (PHD) enzymes selectively hydroxylate proline residues of HIF. The
dependence of HIF protein levels on the concentration of O2 present, mediated by the PHD
enzymes, forms the basis for one of the most significant biological sensor systems of tissue
oxygenation in response to ischemic and inflammatory events [404]. As a result, pharmacological
inhibition of these enzymes, resulting in stabilization of HIF, has therapeutic potential for treating
conditions of tissue stress and injury [404].

Sulfur (Z = 16) is an essential element, involved in numerous biochemical processes in oxidation
states ranging from −2 (sulfide) to +6 (sulfate). It is the seventh most abundant element in the
body (ca 160 g).

Sulfur compounds act as both electron donors and electron acceptors in metabolic reactions.
Methionine (Met), the thioether amino acid, manages major metabolic and catalytic activities,
initiates protein synthesis and undergoes reversible redox reactions to protect protein integrity
[405]. The abundant intracellular thiol tripeptide glutathione (GSH) is a defensive biomolecule

 on May 21, 2015http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


30

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A373:20140182

.........................................................

against toxic xenobiotics such as drugs, pollutants and carcinogens [406]. As an antioxidant,
GSH participates in protection of the cell from oxidative stress either directly or as a cofactor
of glutathione peroxidases [406]. Thioredoxins, with a dithiol-disulfide active site, are a class of
redox proteins that participate in redox signalling in the body and are coded by the TXN gene
[407]. Cysteine (Cys) is biosynthesized in humans and participates in enzymatic reactions as a
nucleophile. Keratin’s disulfide bonds are mostly responsible for the strength of this protein that
is present in our skin, hair and nails.

Hydrogen sulfide (H2S), a highly toxic gas, is a mammalian messenger molecule. It is largely
formed from Cys or its derivatives by the enzymes cystathionine β-synthase and cystathionine
γ-lyase (CSE) [408]. One mechanism of H2S signalling is the sulfhydration (persulfide RSSH
formation) of reactive Cys residues in target proteins [408]. This sulfhydration is responsible
for the regulation of inflammation and endoplasmic reticulum stress signalling as well as
of vascular tension [409]. A number of additional pharmacological targets for H2S have
been identified including K(ATP), the ATP-sensitive potassium channel, and transient receptor
potential channels, NF-κB nuclear translocation, extracellular signal-regulated kinase and Akt
(protein kinase B) [410]. Atherosclerosis is a chronic disease that is considered to be the
leading cause of cardiovascular morbidity and mortality [411]. Endogenous H2S production
could be beneficial for prevention and treatment of atherosclerosis [412,413], since decreased
levels of endogenous H2S induced by genetic deletion of CSE quickens the disease [412].
Sulfide is ubiquitous in the iron sulfur redox proteins ferredoxins. The Fe/S clusters are
assembled on a scaffold protein in mitochondria, transported out and then incorporated into
ferredoxins.

There is only about 4 mg of selenium (Z = 34) in the body, but it is essential and its genetic codes
are now well known. Selenium exerts its biological functions through selenoproteins.

Unlike the 20 standard amino acids, Sec is biosynthesized from serine on its tRNA. The
insertion of Se donated by selenophosphate into the amino acid serine to give the 21st amino
acid selenocysteine is encoded by the termination codon UGA, which is one of three termination
codons for mRNA translation in non-selenoprotein genes, resulting in 25 selenoproteins with
redox and signalling functions [414]. Recognition of the UGA codon as a Sec insertion site
instead of stop requires a Sec insertion sequence element in selenoprotein mRNAs and a unique
selenocysteyl-tRNA, both of which are recognized by specialized protein factors.

Selenium has an antioxidant effect as selenocysteine in the enzyme glutathione peroxidase
(GSH-Px) and is also present in other selenoproteins such as the type 1 iodothyronine 59-
deiodinase, important in the activation and deactivation of thyroid hormones [414]. However,
the functions of most selenoproteins and Se-containing biomolecules still remain unclear.
Selenomethionine and Se-methyl-seleno-L-cysteine are in phase I trials for chemopreventitive
treatment of prostate cancer in healthy individuals [415]. Selenium sulfide is an antifungal agent
that is used as an additive to shampoos to treat dandruff and certain types of dermatitis [416].

Tellurium (Z = 52) has been regarded as a toxic, non-essential element but studies of the
pharmacological properties of both organic and inorganic tellurium compounds have revealed
some potential applications in medicine [417]. One such drug is AS101, a non-toxic TeIV

compound that is in phase II clinical trials for treatment of external genital warts, as an additive
to the standard chemotherapy regimen of newly diagnosed elderly AML patients and AML
transformed myelodysplastic syndrome patients and as a preventative agent of bone marrow
toxicity due to chemotherapy in cancer patients [418–420]. A study of the oral and intraperitoneal
administration of AS101 revealed that the drug significantly reduced clinical manifestations of
inflammatory bowel diseases [421]. In a dextran sodium sulfate-induced colitis model, AS101
exerted its anti-inflammatory and anti-apoptotic activities through the downregulation of colonic
cytokine levels (IL-17 and IL-1β) and by the blockade of leucocyte (neutrophil and macrophage)
migration into the colon [421].
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Figure 23. Ionic radii of the halide ions and enthalpy of hydration [27,28].

9. Group 17: the halogens
There is a lot of fluorine (Z = 9) in the body (total ca 3 g) and in the form of fluoride may
be essential, but surprisingly little appears to be known about specific uptake and transport
mechanisms. There may be specific HF transport proteins (in acidic conditions, vide infra) and
F−/H+ cotransporter or F−/OH− antiporter proteins [422].

Fluoride is the smallest and most strongly basic of the halide ions, figure 23. Fluoride is added
to drinking water and its presence has a beneficial effect on teeth and bones [423]. Fluoride has
a high affinity for ‘hard’ metal ions such as Ca2+. It displaces hydroxyl ions in hydroxyapatite
(Ca5(PO4)3OH), which is the main constituent of teeth and bones, to a stronger and harder
fluoroapatite (Ca5(PO4)3F) [423]. It is recommended that small levels of 26–35 μM of fluoride can
strengthen enamel. Gross systemic exposure to fluorides could alter bone homeostasis and dental
enamel development [424]. Dental fluorosis is dependent on fluoride dose as well as timing and
duration of exposure. In many parts of the world the amount of fluoride in ground water exceeds
the recommended levels giving rise to fluorosis which then progresses to skeletal fluorosis.

Fluorides seem to regulate their activity through the mitogen-activated protein kinases MAPK
signalling pathway which can result in alterations to gene expression, cell stress and cell death
[424]. Fluoride metabolism in our bodies is pH dependent as the coefficient of permeability
of lipid bilayer membranes to hydrogen fluoride is a million times that of the fluoride ion
[425]. This translates to fluoride being able to readily cross cell membranes as HF in reaction
to a pH gradient between body fluid compartments which is why following ingestion, levels
of fluoride in blood plasma rapidly rise because of fast absorption in the stomach [425].
Aluminium fluoride and beryllium fluoride are used as inhibitors of many enzymes. They
act as mimics of phosphate and can activate the heterotrimeric GTP-binding proteins [426].
There are more numerous fluorinated pharmaceuticals available as anaesthetics, antibiotics, anti-
tumour and anti-inflammatories [427,428]. Fluorine-18 labelled deoxyglucose (electron capture,
half-life 110 min) is one of the most widely used tracers for PET imaging to detect changes
in glucose metabolism in pathophysiological processes [429]. 18F-fluorodeoxyglucose-positron
emission tomography (18F-FDG-PET) is also used for screening, localization and follow-up of
hypermetabolic processes including malignancies, infections and autoimmune processes [430].

Chlorine (Z = 17) is prevalent in the body (ca 96 g). The concentration of Cl− is high in body fluids
(ca 100 mM in blood) and is regulated in cellular compartments (e.g. 25 mM in the cytoplasm and
4 mM in the nucleus of cells). Unlike fluorine, but in common with bromine and iodine, chlorine
can exist in oxidized forms in the body.
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Figure 24. The three and four iodine atoms in triiodothyronine and thyroxine, respectively. T3 is the more active form of the
hormone produced from T4 by the action of a Se-dependent deiodinase (peroxidase) enzyme.

Membrane transport proteins for Cl− have been characterized. Epithelial transport of Cl− (and
SCN−) in many organs including the intestines, lungs, sweat glands and kidneys is mediated by
the cystic fibrosis transmembrane conductance regulator (CFTR) [431], a 1480 amino acid cAMP-
activated ATP-gated anion-channel glycoprotein. Mutations in the gene encoding CFTR can lead
to reduction in either its transport capacity for chloride or cell surface expression causing the
condition cystic fibrosis [432,433] and a type of male sterility as a result of congenital absence of
the vas deferens [434].

Higher oxidation states of chlorine also play a role in the body. Hypochlorous acid (HOCl) is a
strong oxidant (bleach!) produced by white blood cells (neutrophils) and can eradicate all types of
bacteria. Even though it is employed by our immune system, it can also be lethal to our own cells
depending on the dose [435]. In neutrophils, the haem enzyme myeloperoxidase uses hydrogen
peroxide to convert chloride to HOCl [436].

There are significant amounts of bromine (Z = 35) in the body (ca 0.2 g) and in blood (3.2–
5.6 μg ml−1), arising from a daily dietary intake of bromide ca 2–8 mg (fish, grains and nuts),
and there is growing evidence that it is essential. Eosinophil peroxidase is a haloperoxide enzyme
encoded for by the EPX gene and produces both HOBr and HOCl [437]. Even though it can
produce HOCl, it preferentially chooses bromide over chloride to produce brominating agents
even at physiological concentrations, when chloride is vastly more abundant [438].

A recent paper has concluded that bromine is an essential trace element for all animals [439],
since Br− (on conversion to HOBr) is a required cofactor for peroxidasin-catalysed formation of
sulfilimine cross-links in a posttranslational modification essential for tissue development within
the collagen IV scaffold of basement membranes [439]. More research is needed to confirm the
nutritional benefits of bromine.

Although there is only about 16 mg in the body, iodine (Z = 53) is essential for the thyroid
gland in the form of thyroid hormones, especially triiodothyronine (T3) (figure 24) and
thyroxine (tetraiodothyronine, T4), synthesized from iodine (iodide) and tyrosine from the protein
thyroglobulin by the enzyme thyroid peroxidase. These hormones play a major role in regulating
growth and development. Iodine deficiency results in goitre (Derbyshire neck), avoided by
supplementation of, e.g. table salt with iodate. The importance of C–I bonds can be contrasted
with the behaviour of the lighter halogens in the body.

The Na+/I− symporter (NIS) plays an important role in iodine metabolism and thryroid
regulation [440]. NIS is an integral plasma membrane glycoprotein and thyroidal I− transport
from the bloodstream is made possible by selective targeting of NIS to the basolateral membrane
[440]. It also regulates transport of I− in other tissues, including salivary glands, gastric
mucosa and lactating mammary gland, where I− is translocated into the milk for thyroid
hormone biosynthesis by the nursing newborn [441]. NIS is an ideal foundation for diagnostic
and therapeutic management of thyroid cancer and its metastases using radioiodide [442].
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Transduction of NIS into various kinds of cancer cells to render them susceptible to destruction
with radioiodide has been reported [440,443]. Remarkably, more than 80% of human breast cancer
samples express endogenous NIS, making the potential use of radioiodide for diagnosis and
treatment possible [444].

Astatine-211 is an α-emitter with a half-life of 7.2 h. α-Emitters have unique features that make
them ideal for elimination of focal pockets of tumour cells that are predominantly located in
normal neutral tissue in the CNS [445]. For example, they can be used for targeted therapy
without risk of adjacent normal tissue toxicity that sometimes occurs with β-emitters; this feature
is ideal for sensitive areas such the CNS [445]. A pilot clinical study has evaluated the feasibility,
safety and efficacy of the chimeric antitenascin mAb 81 C6 labelled with 211At in patients with
recurrent malignant brain tumours [445]. The radiotherapeutic agent 211At-MX35 F(ab′)2 has also
completed phase I pharmacokinetic studies in women in complete clinical remission of recurrent
ovarian cancer [446].

10. Group 18: the noble gases
Exploration of the noble gases in medicine has been limited, although helium (Z = 2) is being
considered for adjunct therapy for respiratory ailments such as asthma, croup and bronchiolitis
[447]. It has also shown efficacy in protection of the myocardium from ischaemia, though the
mechanism of protection is unclear [411]. Employment of He in the operating theatre as a
replacement for CO2 to insufflate the abdomens of patients undergoing laparoscopic abdominal
procedures is being evaluated [448]. Helium is a better alternative as it prevents respiratory
acidosis in patients with co-morbid conditions that cause CO2 retention [448]. Helium ion
microscopy offers imaging of organs in very fine detail and hyperpolarized helium (HP 3He)
for pulmonary MRI can be used for imaging of both normal and diseased lungs [447,449].

About 1% of the air we breathe is argon (Z = 18), mostly arising from the radioactive decay of
40K in the Earth’s crust. Argon has found application in electrosurgery; gas discharges can induce
mainly superficial thermal effects on tissue in a non-contact manner (argon plasma coagulation)
[450]. It was first used in open surgery in the 1970s and then later adapted for endoscopy
[451,452]. Examples of its use include repair of haemorrhages that can occur during surgery or
ulcers, injured blood vessels, varices and tumours, as well as devitalization and shrinkage of
tumours and obstructing tissues [450].

Krypton (Z = 36) gas, as the quadrupolar isotope 83Kr (nuclear spin I = 9/2, natural abundance
11.5%) can be used for imaging (MRI) of airways particularly to differentiate between
hydrophobic and hydrophilic surfaces [453,454].

Xenon (Z = 54) is used as a general anaesthetic. It has a high affinity for the glycine site on
the N-methyl-D-aspartate (NMDA) receptor, and unlike most other clinical NMDA receptor
antagonists, it is not neurotoxic [455,456]. Of particular note is the use of xenon as an
additive in the ventilation mix for a newborn baby to prevent brain injury (http://www.wales.
nhs.uk/sitesplus/863/news/16104 (accessed 29 August 2014)). Xenon-133 (half-life 5.2 days, β−
decay) is used in radioimaging of the lungs by SPECT [457], and measurement of blood flow
[458]. Hyperpolarized 129Xe (nuclear spin I = 1/2, 26% abundant) is an MRI contrast agent used
for imaging of the flow of gas in the lungs [459].

Radon (Z = 86) is a toxic radioactive (dense) gas produced from the breakdown of long-lived
(billions of years) radioactive uranium (and thorium) via 226Ra in soils, rocks and water. Decay
of radon yields radioactive solids (radon daughters) which are α-emitters and attach to dust
particles and are then inhaled. This inhalation has been linked to lung cancer [460,461]. Radon
exposure may also lead to production of toxic reactive oxygen species. Dissolved radon in a
pregnant woman’s bloodstream can have detrimental consequences including retardation of
brain development and even death [460]. Accumulation of radon in homes is a potential problem.
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Table 2. Examples of human genetic (proteomic) codes for the elements of the periodic table.

atomic number element examples of genetic codes
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 H uptake and transport of H-containing molecules (C−H, N−H, etc.), proteins,

bicarbonate (CO2) for pH control
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 C general: C−H, C=O, etc. taken up in building blocks (amino acids, fatty acids, etc.)

regulation of CO2, carbonate, CO
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 N general: N−H, N−C, etc., amino acids, nucleotides

NOSs; conversion of NH3 into urea (enzymes and transporters)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 O for example, O2 uptake, transport (haemoglobin) and storage (myoglobin), conversion

of O2 to H2O2, and H2O by mitochondrial proteins, various enzymes (e.g. superoxide

dismutase, catalase)

O2-sensor proteins (e.g. HIF)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 F F−/H+ cotransporter or a F−/OH− antiporter ?? Biochemistry poorly understood
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11 Na membrane pumps Na+/K+ ATPase
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12 Mg MAGT1, magnesium transporter 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15 P kinases, phosphatases, nucleotides
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16 S thiol/disulfide and Met in proteins; sulfide in ferredoxins
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17 Cl chloride channel: CFTR
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19 K membrane pumps Na+/K+ ATPase
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20 Ca Ca2+-sensor protein troponin; Ca2+-ATPase membrane pump; calmodulin transduces
Ca2+ signals in cells

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25 Mn most abundant Mn protein glutamine synthetase; Mn superoxide dismutase in

mitochondria
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26 Fe non-haem Fe proteins ca 1% of human proteome
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

27 Co uptake and carrier proteins for vitamin B12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

29 Cu Cu proteins ca 1% of human proteome
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30 Zn Zn2+ proteins ca 10% of human proteome
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

34 Se 25 selenoproteins with redox and signalling functions
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

42 Mo four Mo enzymes (xanthine oxidoreductase and sulfite oxidase families); taken up only

as molybdate?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

53 I thyroid hormones thyroxine (T4) and triiodothyronine (T3) synthesised from tyrosine

residues in protein thyroglobulin
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

potentially essential elements
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14 Si role in bone mineralization?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23 V role in phosphate biochemistry?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24 Cr influence on glucose metabolism?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28 Ni essential for some microorganisms

allergenic: MHCII-Ni-peptide recognition by T cells
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

35 Br essential (as HOBr?) for killing invading microorganisms?

essential for assembly of collagen IV scaffolds in tissue development—therefore

essential for all animals?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50 Sn once thought to be essential for animal growth
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Prevalent isotopes are 222Rn (from 238U), an α-emitter with a half-life of 3.8 days, and 220Rn
(α-emitter, half-life 56 s) from the α-decay of 224Ra.

11. Conclusion
We have reviewed very briefly the role of the elements of the periodic table in human life. In
particular we have tried to identify which elements are essential for man and to indicate other
elements which are or can be used in diagnosis and therapy. There is much medicinal inorganic
chemistry still to be explored. The field is in its infancy compared to medicinal organic chemistry.
More detailed background to the biological chemistry of the elements, including the influence of
the environment on the natural selection of the elements by animals can be found in the recent
publications by Williams et al. [462–464]. It is not easy to compile a definitive list of essential
elements. Elements which are added to mineral supplements these days are largely there as a
result of nutritional experiments carried out many years ago [5–20]. Such experimental studies
on animal growth under defined nutritional conditions are expensive and the interdependence of
the biochemistry of the elements and various organic cofactors can complicate the interpretation.
Moreover, not only do we wish to know which elements are essential for normal growth, but also
what their biochemical functions are and which particular species (chemical forms of the element)
are essential.

There are many interesting examples of where a biological function requires the synergistic
action of two or more elements. For example, a Se enzyme deiodinates the thyroid hormone
T4 [465], copper ceruloplasmin oxidizes iron and assists with its transport [466], cytochrome
oxidase has both copper and iron in its active site for conversion of oxygen into water,
cytoplasmic superoxide dismutase uses both copper and zinc to convert superoxide into oxygen
and water, and the close cooperation between iron (FeII and FeIII) and sulfur (sulfide and cysteine
thiolate) is evident in ubiquitous ferredoxin proteins which are critical for electron storage
and transport.

Since the sequence of the human genome (and many others) is now known, it is timely to ask
the question ‘can we recognize genetic codes for essential elements?’ Our conclusions are listed
in table 2, a list which produces 20 essential elements and six other potentially essential elements.

This short journey through the periodic table illustrates that, as yet, we are unable to
understand the role of many elements found in the body in terms of genetic codes. Much modern
drug design now relies on target-based design—drugs which target specific gene products
(proteins/enzymes). The inventive use of minerals in medicines is therefore in danger of being
abandoned. It is worth recalling the ancient Chinese approach—the use of stone drugs (mineral
drugs) developed over a period of some 2000 years, preparations from natural sources (minerals
and animal fossils) that in some cases contain up to 35 elements [467]. Synergistic effects may well
arise from combinations of elements (and organic compounds such as vitamins). Many exciting
challenges remain in this field.
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