34 research outputs found

    Lithium-ion adsorption on surface modified porous carbon

    Get PDF
    Lithium-ion storage in porous carbon electrodes offers challenges due to poor electrode kinetics and limited storability. In this article, we demonstrate improved lithium-ion storage kinetics and rate capability in carbon electrode with appropriate surface or void modifications. The surface of porous carbon is modified by developing a thin film of either a metal oxide (Mn2O3) or a metal (cobalt) or the large voids in them are filled using hierarchical MnCo2O4 or TiO2 nanoflowers. Lithium-ion capacitors are fabricated in the Carbon//LiPF6//Li configuration and evaluated their lithium storage performance using cyclic voltammetry, galvanostatic charge discharge cycling, and electrochemical impedance spectroscopy. While the surface or void modification nominally increased the specific capacitance, the potential window and rate capability of the resulting devices remarkably increased. Among all the tested devices, the MnCo2O4 flowers filled electrode showed the largest capacitance and capacity retention, which are ascribed to its lower lithium transfer resistance

    Tailoring the charge storability of commercial activated carbon through surface treatment

    Get PDF
    Sustainability concerns in the electrochemical charge storage realm revitalized research on the electrochemical capacitors (ECs), or synonymously, supercapacitors (SCs), because of the renewability of their electrode materials and environmental benignity thereby, longer life cycle to improve materials circularity, and their inherent superior rate charging/discharging than batteries. As SCs store energy via the reversible adsorption of electrolyte ions on the electrode pores, maximizing the number of pores to accommodate the ions is the most desired way to improve the charge storability. In this regard, we report herewith a simple and facile approach for engineering the porosity of commercial activated carbon by refluxing it in nitric acid as a function of time; the BET surface area of the 72 h refluxed samples increased by 75 %. Charge storage properties of the modified electrodes are evaluated in a three-electrode system configuration in 1 M Na2SO4 electrolyte; a 75 % increase in the surface area led to an increase in specific capacitance over 110 % following a significant reduction in Warburg impedance. Besides, symmetric SC full cells were fabricated by varying the electrode mass between 3 and 14 mg·cm−2 in five steps. All the fabricated devices achieved a potential window of 1.8 V in 1 M Na2SO4. The highest mass loaded (∼14 mg·cm−2) device fabricated using the prepared material has delivered a maximum capacitance of ∼990 mF, the maximum areal capacitance of ∼494 mF·cm−2, an energy density of ∼13 mWh·cm−3, and a maximum power density of ∼2189 mW·cm−3. The device also maintained ∼97 % retention in capacitance with a remarkable coulombic efficiency of ∼97 % after 5000 cycles. The performance of the device is comparable with the commercial SCs used for low voltage DC hold-up applications such as embedded microprocessor systems. The procedure developed herewith supports easy recycling and reusing of the activation agent, and thereby reduces the release of toxic chemicals into the environment

    Electrospun ternary composite metal oxide fibers as an anode for lithium-ion batteries

    Get PDF
    Nickel–cobalt–manganese oxides (NCMs) are widely investigated as cathode materials for lithium-ion batteries (LIBs) given their beneficial synergistic effects of high storability, electrical conductivity, and stability. However, their use as an anode for LIBs has not been adequately addressed. NCM nanofibers prepared using the multi-needle electrospinning technique are examined as the anode in LIBs. The NCM nanofibers demonstrated an initial discharge capacity of ∼1,075 mAh g−1 with an initial capacity loss of ∼42%. Through controlling the conductive additive content, the initial discharge capacity can be further improved to ∼1810 mAh g−1, mostly attributing to the improved interfiber connectivity supported by the significant lowering of impedance when the amount of conductive additive is increased. This study also reveals that the conventional ratio of 80:10:10 wt% (active materials:additives:binder) is not optimal for all samples, especially for the high active surface area electrospun nanofibers

    Direct pyrolysis and ultrasound assisted preparation of N, S co-doped graphene/Fe3C nanocomposite as an efficient electrocatalyst for oxygen reduction and oxygen evolution reactions

    Get PDF
    Bifunctional electrocatalysts to enable efficient oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are essential for fabricating high performance metal–air batteries and fuel cells. Here, a defect rich nitrogen and sulfur co-doped graphene/iron carbide (NS-GR/Fe3C) nanocomposite as an electrocatalyst for ORR and OER is demonstrated. An ink of NS-GR/Fe3C is developed by homogeneously dispersing the catalyst in a Nafion containing solvent mixture using an ultrasonication bath (Model-DC150H; power − 150 W; frequency − 40 kHz). The ultrasonically prepared ink is used for preparing the electrode for electrochemical studies. In the case of ORR, the positive half-wave potential displayed by NS-GR/Fe3C is 0.859 V (vs. RHE) and for the OER, onset potential is 1.489 V (vs. RHE) with enhanced current density. The optimized NS–GR/Fe3C electrode exhibited excellent ORR/OER bifunctional activities, high methanol tolerance and excellent long-term cycling stability in an alkaline medium. The observed onset potential for NS–GR/Fe3C electrocatalyst is comparable with the commercial noble metal catalyst, thereby revealing one of the best low-cost alternative air–cathode catalysts for the energy conversion and storage application

    In situ metal organic framework (ZIF-8) and mechanofusion-assisted MWCNT coating of LiFePO/C composite material for lithium-ion batteries

    Get PDF
    LiFePO4 is one of the industrial, scalable cathode materials in lithium-ion battery production, due to its cost-effectiveness and environmental friendliness. However, the electrochemical performance of LiFePO4 in high current rate operation is still limited, due to its poor ionic- and electron-conductive properties. In this study, a zeolitic imidazolate framework (ZIF-8) and multiwalled carbon nanotubes (MWCNT) modified LiFePO4/C (LFP) composite cathode materials were developed and investigated in detail. The ZIF-8 and MWCNT can be used as ionic- and electron-conductive materials, respectively. The surface modification of LFP by ZIF-8 and MWCNT was carried out through in situ wet chemical and mechanical alloy coating. The as-synthesized materials were scrutinized via various characterization methods, such as XRD, SEM, EDX, etc., to determine the material microstructure, morphology, phase, chemical composition, etc. The uniform and stable spherical morphology of LFP composites was obtained when the ZIF-8 coating was processed by the agitator [A], instead of the magnetic stirrer [MS], condition. It was found that the (optimum of) 2 wt.% ZIF-8@LFP [A]/MWCNT composite cathode material exhibited outstanding improvement in high-rate performance; it maintained the discharge capacities of 125 mAh g−1 at 1C, 110 mAh g−1 at 3C, 103 mAh g−1 at 5C, and 91 mAh g−1 at 10C. Better cycling stability with capacity retention of 75.82% at 1C for 100 cycles, as compared to other electrodes prepared in this study, was also revealed. These excellent results were mainly obtained because of the improvement of lithium-ion transport properties, less polarization effect, and interfacial impedance of the LFP composite cathode materials derived from the synergistic effect of both ZIF-8 and MWCNT coating materials

    MoO3 nanoparticle coatings on high-voltage 5 V LiNi0.5 Mn1.5 O4 cathode materials for improving lithium-ion battery performance

    Get PDF
    To reduce surface contamination and increase battery life, MoO3 nanoparticles were coated with a high-voltage (5 V) LiNi0.5 Mn1.5 O4 cathode material by in-situ method during the high-temperature annealing process. To avoid charging by more than 5 V, we also developed a system based on anode-limited full-cell with a negative/positive electrode (N/P) ratio of 0.9. The pristine LiNi0.5 Mn1.5 O4 was initially prepared by high-energy ball-mill with a solid-state reaction, followed by a precipitation reaction with a molybdenum precursor for the MoO3 coating. The typical structural and electrochemical behaviors of the materials were clearly investigated and reported. The results revealed that a sample of 2 wt.% MoO3-coated LiNi0.5 Mn1.5 O4 electrode exhibited an optimal electrochemical activity, indicating that the MoO3 nanoparticle coating layers considerably enhanced the high-rate charge–discharge profiles and cycle life performance of LiNi0.5 Mn1.5 O4 with a negligible capacity decay. The 2 wt.% MoO3-coated LiNi0.5 Mn1.5 O4 electrode could achieve high specific discharge capacities of 131 and 124 mAh g−1 at the rates of 1 and 10 C, respectively. In particular, the 2 wt.% MoO3-coated LiNi0.5 Mn1.5 O4 electrode retained its specific capacity (87 mAh g−1) of 80.1% after 500 cycles at a rate of 10 C. The Li4 Ti5 O12 /LiNi0.5 Mn1.5 O4 full cell based on the electrochemical-cell (EL-cell) configuration was successfully assembled and tested, exhibiting excellent cycling retention of 93.4% at a 1 C rate for 100 cycles. The results suggest that the MoO3 nano-coating layer could effectively reduce side reactions at the interface of the LiNi0.5 Mn1.5 O4 cathode and the electrolyte, thus improving the electrochemical performance of the battery system

    Quasi-anisotropic benefits in electrospun nickel–cobalt–manganese oxide nano-octahedron as anode for lithium-ion batteries

    Get PDF
    Despite having a significantly higher capacity (>1000 mA h g−1) as compared to the conventional graphite anode, the adoption of the conversion-type transition metal oxide (TMO) anodes is restricted due to their inferior cycling stability, sluggish ion transport behavior, high potential plateau vs. Li/Li+, etc. Subsequent developments through nanostructuring and chemical composition engineering have improved the electrochemical performance of TMO anodes. Herein, a quasi-anisotropic nano-octahedron quaternary metal oxide composite is designed and synthesized using pilot-scale electrospinning by manipulating the conductivity of the polymeric solution. This morphology is first reported via electrospinning, which routinely produces nanofiber morphology. The fabricated nano-octahedron exhibited slightly higher gravimetry specific capacity (∼1184 mA h g−1 at 100 mA g−1) as compared to the nanofiber counterpart (1075 mA h g−1 at 100 mA g−1), with an initial capacity loss of 37.4% and 38.7%, respectively. Owing to the isotropic volume expansion, the nano-octahedron was capable of retaining 78.9% (or 291.2 mA h g−1) capacity after 500 charge/discharge cycles at 1000 mA g−1, compared to the inferior 24.1% (or 71.1 mA h g−1) for its nanofiber counterpart. Overall, the results discussed here provide valuable information on morphology design for future high-performance TMO anodes

    Effect of single-walled carbon nanotube sub-carbon additives and graphene oxide coating for enhancing the 5 V LiNi0.5Mn1.5O4 cathode material performance in lithium-ion batteries

    Get PDF
    High-voltage spinel LiNi0.5Mn1.5O4 (LNMO) is a promising cathode material for next-generation lithium-ion batteries (LIBs), but its poor cycle performance has impeded its commercialization. In this study, we developed highly stable LNMO cathode materials having an octahedral morphology through a solid-state high-energy ball-mill–cum–spray-drying method. We also developed a novel strategy for modifying this cathode material with two kinds of carbon materials, thereby improving the electrochemical cycling performance. Introducing single-walled carbon nanotubes (SWCNTs) as a sub-carbon conductive additive during the slurry preparation process improved the conductivity of electrons between the particles of the cathode material. The LNMO electrode modified with the SWCNT sub-carbon additives exhibited an average Coulombic efficiency of 99.4% after 500 cycles at 1C, compared with 98.9% for the pristine LNMO-based electrode. Furthermore, we used a wet-chemical method to coat graphene oxide (GO) onto the post-sintered LNMO cathode material to act as a protective layer, preventing corrosion induced by HF in the electrolyte. The capacity retention of the GO-coated LNMO electrode after 500 cycles at 1C (91.8%) was higher than that of the pristine LNMO (52.5%). The corresponding dual-modification strategy, combining the SWCNTs and GO, provided LNMO cathode materials exhibiting superior rate performance and cyclability, with an average Coulombic efficiency of 99.3% and capacity retention of 92.9% after 500 cycles at 1C. Thus, the LNMO cathode materials prepared in this study possessed excellent electrochemical properties favoring their marketability, applicability, and competitiveness for application in high-voltage LIBs

    Unveiling high-power and high-safety lithium-ion battery separator based on interlayer of ZIF-67/cellulose nanofiber with electrospun poly(vinyl alcohol)/melamine nonwoven membranes

    Get PDF
    Due to the poor thermal stability of conventional separators, lithium-ion batteries require a suitable separator to maintain system safety for long-term cycling performance. It must have high porosity, superior electrolyte uptake ability, and good ion-conducting properties even at high temperatures. In this work, we demonstrate a novel composite membrane based on sandwiching of zeolitic imidazole frameworks-67 decorated cellulose acetate nanofibers (ZIF-67@CA) with electrospun poly(vinyl alcohol)/melamine (denoted as PVAM) nonwoven membranes. The as-prepared sandwich-type membranes are called PVAM/x%ZIF-67@CA/PVAM. The middle layer of composite membranes is primarily filled with different weight percentages of ZIF-67 nanoparticles (x = 5, 15, and 25 wt%), which both reduces the non-uniform porous structure of CA and increases its thermal stability. Therefore, our sandwich-type PVAM/x%ZIF-67@CA/PVAM membrane exhibits a higher thermal shrinkage effect at 200 °C than the commercial polyethylene (PE) separator. Due to its high electrolyte uptake (646.8%) and porosity (85.2%), PVAM/15%ZIF-67@CA/PVAM membrane achieved high ionic conductivity of 1.46 × 10-3 S cm−1 at 70 °C, as compared to the commercial PE separator (ca. 6.01 × 10-4 S cm−1 at 70 °C). Besides, the cell with PVAM/15%ZIF-67@CA/PVAM membrane shows an excellent discharge capacity of about 167.5 mAh g−1after 100 cycles at a 1C rate with a capacity retention of 90.3%. The ZIF-67 fillers in our sandwich-type composite membrane strongly attract anions (PF6-) through Lewis' acid-base interaction, allowing uniform Li+ ion transport and suppressing Li dendrites. As a result, we found that the PVAM/15%ZIF-67@CA/PVAM composite nonwoven membrane is applicable to high-power, high-safety lithium-ion battery systems that can be used in electric vehicles (EVs)

    Simultaneous electrochemical determination of benzenediol compounds in environmental samples using nano architectures of hydrogen ammonium zinc molybdate layered double hydroxides integrated with carbon black modified electrode

    Get PDF
    Phenolic compounds, such as benzenediol (BD), are toxic and exhibit poor biodegradability, posing a threat to human health and the environment, even at low concentrations. Therefore, the simultaneous detection of BD at low detection limits and a wide detection range is of significant interest for monitoring water quality and environmental remediation efforts. In this study, we developed a novel electrochemical sensor for BD based on a nanocomposite (NC) of hydrogen ammonium zinc molybdate layered double hydroxide (AZnMo-LDHs) and carbon black (CB) as a modification for the electrode. Various characterization methods were employed to verify the morphological, structural, and physical-chemical properties of AZnMo-LDHs/CB NC. The NC-modified electrode exhibited low electrical resistance, high electrocatalytic activity, and fast electron transport, thanks to the synergistic effects between AZnMo-LDHs and CB. Additionally, the NC-modified electrode demonstrated excellent electrochemical performance in selectively and simultaneously detecting hydroquinone (HQ), catechol (CC), and resorcinol (RC). Differential pulse voltammetric studies confirmed that AZnMo-LDHs/CB NC enabled the detection of HQ, CC, and RC within linear response ranges of 0.05–971 μM, 0.1–1036 μM, and 0.5–1408.5 μM, respectively, with detection limits of 0.0054 μM, 0.0018 μM, and 0.075 μM. To validate the sensor's practical application, we tested it with multiple environmental samples, including water and soil, and obtained excellent recovery rates for HQ, CC, and RC
    corecore