Direct pyrolysis and ultrasound assisted preparation of N, S co-doped graphene/Fe₃C nanocomposite as an efficient electrocatalyst for oxygen reduction and oxygen evolution reactions

Karuppasamy Kohila Rani^a, Chelladurai Karuppiah^b, Sea-Fue Wang^a, Saleh O. Alaswad^c, Pedaballi Sireesha^a, Rajkumar Devasenathipathy^a, Rajan Jose^d, Chun-Chen Yang^{b,e,f}
^a Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
^b Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC
^c Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O Box 6086, 11442 Riyad, Saudi Arabia
^d Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, 26300 Kuantan, Malaysia
^e Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City

² Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC

^f Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan City 333, Taiwan, ROC

ABSTRACT

Bifunctional electrocatalysts to enable efficient oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are essential for fabricating high performance metal—air batteries and fuel cells. Here, a defect rich nitrogen and sulfur co-doped graphene/iron carbide (NS-GR/Fe₃C) nanocomposite as an electrocatalyst for ORR and OER is demonstrated. An ink of NS-GR/Fe₃C is developed by homogeneously dispersing the catalyst in a Nafion containing solvent mixture using an ultrasonication bath (Model-DC150H; power – 150 W; frequency – 40 kHz). The ultrasonically prepared ink is used for preparing the electrode for electrochemical studies. In the case of ORR, the positive half-wave potential displayed by NS-GR/Fe₃C is 0.859 V (vs. RHE) and for the OER, onset potential is 1.489 V (vs. RHE) with enhanced current density. The optimized NS–GR/Fe₃C electrode exhibited excellent ORR/OER bifunctional activities, high methanol tolerance and excellent long-term cycling stability in an alkaline medium. The observed onset potential for NS–GR/Fe₃C electrocatalyst is comparable with the commercial noble metal catalyst, thereby revealing one of the best low-cost alternative air–cathode catalysts for the energy conversion and storage application.

KEYWORDS

Electrocatalysis; Oxygen reduction and evolution; Energy conversion materials; Hetero atomdoped graphene; Iron carbide nanoparticles

ACKNOWLEDGEMENT

Financial support from the Ministry of Science and Technology (MOST), Taiwan (Project No: MOST 109-3116-F-131-001-CC1) is gratefully acknowledged. Dr. Chelladurai Karuppiah also gratefully acknowledges Professor Chun-Chen Yang for the Post-Doctoral position in Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City, Taiwan.