884 research outputs found

    Probing a Complex of Cytochromecand Cardiolipin by Magnetic Circular Dichroism Spectroscopy: Implications for the Initial Events in Apoptosis

    Get PDF
    Oxidation of cardiolipin (CL) by its complex with cytochrome c (cyt c) plays a crucial role in triggering apoptosis. Through a combination of magnetic circular dichroism spectroscopy and potentiometric titrations, we show that both the ferric and ferrous forms of the heme group of a CL:cyt c complex exist as multiple conformers at a physiologically relevant pH of 7.4. For the ferric state, these conformers are His/Lys- and His/OH–-ligated. The ferrous state is predominantly high-spin and, most likely, His/–. Interconversion of the ferric and ferrous conformers is described by a single midpoint potential of -80 ± 9 mV vs SHE. These results suggest that CL oxidation in mitochondria could occur by the reaction of molecular oxygen with the ferrous CL:cyt c complex in addition to the well-described reaction of peroxides with the ferric form

    Aerodynamic Forces and Loadings on Symmetrical Circular-Arc Airfoils with Plain Leading-Edge and Plain Trailing-Edge Flaps

    Get PDF
    An investigation has been made in the Langley two-dimensional low-turbulence tunnel and in the Langley two-dimensional low-pressure tunnel of 6- and 10-percent-thick symmetrical circular-arc airfoil sections at low Mach numbers and several Reynolds numbers. The airfoils were equipped with 0.15-chord plain leading-edge flaps and 0.20-chord plan trailing-edge flaps. The section lift and pitching-moment characteristics were determined for both airfoils with the flaps deflected individually and in combination. The section drag characteristics were obtained for the 6-percent-thick airfoil with the flaps partly deflected as low-drag-control flaps and for airfoils with the flaps neutral. Surface pressures were measured on the 6-percent-thick airfoil section with the flaps deflected either individually or in appropriate combination to furnish flap load and hinge-moment data applicable to the structural design of the airfoil. A generalized method is developed that permits the determination of the chordwise pressure distribution over sharp-edge airfoils with plain leading-edge flaps and plain trailing-edge flaps of arbitrary size and deflection

    Temperature, nutrient availability, and species traits interact to shape elevation responses of Australian tropical trees

    Get PDF
    Elevation gradients provide natural laboratories for investigating tropical tree ecophysiology in the context of climate warming. Previously observed trends with increasing elevation include decreasing stem diameter growth rates (GR), increasing leaf mass per area (LMA), higher root-to-shoot ratios (R:S), increasing leaf δ13C, and decreasing leaf δ15N. These patterns could be driven by decreases in temperature, lower soil nutrient availability, changes in species composition, or a combination of these. We investigated whether these patterns hold within the genus Flindersia (Rutaceae) along an elevation gradient (0 to 1600 m) in the Australian Wet Tropics. Flindersia species are relatively abundant and are important contributors to biomass in these forests. Next, we conducted a glasshouse experiment to better understand the effects of temperature, soil nutrient availability, and species on growth, biomass allocation, and isotopic composition. In the field, GR and leaf δ15N decreased, whereas LMA and leaf δ13C increased with elevation, consistent with observations on other continents. Soil C:N ratio also increased and soil δ15N decreased with increasing elevation, consistent with decreasing nutrient availability. In the glasshouse, relative growth rates (RGR) of the two lowland Flindersia species responded more strongly to temperature than did those of the two upland species. Interestingly, leaf δ13C displayed an opposite relationship with temperature in the glasshouse compared with that observed in the field, indicating the importance of covarying drivers in the field. Leaf δ15N increased in nutrient-rich compared to nutrient-poor soil in the glasshouse, similar to the trend in the field. There was a significant interaction for 15N between temperature and species; upland species showed a steeper increase in leaf 15N with temperature than lowland species. This could indicate more flexibility in nitrogen acquisition in lowland compared to upland species with warming. The distinguishing feature of a mountaintop restricted Flindersia species in the glasshouse was a very high R:S ratio in nutrient-poor soil at low temperatures, conditions approximating the mountaintop environment. Our results suggest that species traits interact with temperature and nutrient availability to drive observed elevation patterns. Capturing this complexity in models will be challenging but is important for making realistic predictions of tropical tree responses to global warming

    Why are tropical conifers disadvantaged in fertile soils? Comparison of Podocarpus guatemalensis with an angiosperm pioneer, Ficus insipida

    Get PDF
    Conifers are, for the most part, competitively excluded from tropical rainforests by angiosperms. Where they do occur, conifers often occupy sites that are relatively infertile. To gain insight into the physiological mechanisms by which angiosperms outcompete conifers in more productive sites, we grew seedlings of a tropical conifer (Podocarpus guatemalensis Standley) and an angiosperm pioneer (Ficus insipida Willd.) with and without added nutrients, supplied in the form of a slow-release fertilizer. At the conclusion of the experiment, the dry mass of P. guatemalensis seedlings in fertilized soil was approximately twofold larger than that of seedlings in unfertilized soil; on the other hand, the dry mass of F. insipida seedlings in fertilized soil was similar to 20-fold larger than seedlings in unfertilized soil. The higher relative growth rate of F. insipida was associated with a larger leaf area ratio and a higher photosynthetic rate per unit leaf area. Higher overall photosynthetic rates in F. insipida were associated with an approximately fivefold larger stomatal conductance than in P. guatemalensis. We surmise that a higher whole-plant hydraulic conductance in the vessel bearing angiosperm F. insipida enabled higher leaf area ratio and higher stomatal conductance per unit leaf area than in the tracheid bearing P. guatemalensis, which enabled F. insipida to capitalize on increased photosynthetic capacity driven by higher nitrogen availability in fertilized soil

    Assessing the Australian termite diversity anomaly: how habitat and rainfall affect termite assemblages

    Get PDF
    Termites are important ecosystem engineers in tropical habitats, with different feeding groups able to decompose wood, grass, litter, and soil organic matter. In most tropical regions, termite abundance and species diversity are assumed to increase with rainfall, with highest levels found in rainforests. However, in the Australian tropics, this pattern is thought to be reversed, with lower species richness and termite abundance found in rainforest than drier habitats. The potential mechanisms underlying this pattern remain unclear. We compared termite assemblages (abundance, activity, diversity, and feeding group composition) across five sites along a precipitation gradient (ranging from ∼800 to 4,000 mm annual rainfall), spanning dry and wet savanna habitats, wet sclerophyll, and lowland and upland rainforests in tropical North Queensland. Moving from dry to wet habitats, we observed dramatic decreases in termite abundance in both mounds and dead wood occupancy, with greater abundance and activity at savanna sites (low precipitation) compared with rainforest or sclerophyll sites (high precipitation). We also observed a turnover in termite species and feeding group diversity across sites that were close together, but in different habitats. Termite species and feeding group richness were highest in savanna sites, with 13 termite species from wood-, litter-, grass-, dung-, and soil-feeding groups, while only five termite species were encountered in rainforest and wet sclerophyll sites—all wood feeders. These results suggest that the Australian termite diversity anomaly may be partly driven by how specific feeding groups colonized habitats across Australia. Consequently, termites in Australian rainforests may be less important in ecosystem processes, such as carbon and nutrient cycling during decomposition, compared with termites in other tropical rainforests

    Similar patterns of leaf temperatures and thermal acclimation to warming in temperate and tropical tree canopies

    Get PDF
    As the global climate warms, a key question is how increased leaf temperatures will affect tree physiology and the coupling between leaf and air temperatures in forests. To explore the impact of increasing temperatures on plant performance in open air, we warmed leaves in the canopy of two mature evergreen forests, a temperate Eucalyptus woodland and a tropical rainforest. The leaf heaters consistently maintained leaves at a target of 4 °C above ambient leaf temperatures. Ambient leaf temperatures (Tleaf) were mostly coupled to air temperatures (Tair), but at times, leaves could be 8–10 °C warmer than ambient air temperatures, especially in full sun. At both sites, Tleaf was warmer at higher air temperatures (Tair > 25 °C), but was cooler at lower Tair, contrary to the ‘leaf homeothermy hypothesis’. Warmed leaves showed significantly lower stomatal conductance (−0.05 mol m−2 s−1 or −43% across species) and net photosynthesis (−3.91 μmol m−2 s−1 or −39%), with similar rates in leaf respiration rates at a common temperature (no acclimation). Increased canopy leaf temperatures due to future warming could reduce carbon assimilation via reduced photosynthesis in these forests, potentially weakening the land carbon sink in tropical and temperate forests
    • …
    corecore