13 research outputs found

    Twice-daily intravenous bolus tacrolimus infusion for acute graft-vs-host disease prophylaxis

    Get PDF

    Neutralization Serotyping of BK Polyomavirus Infection in Kidney Transplant Recipients

    Get PDF
    BK polyomavirus (BKV or BKPyV) associated nephropathy affects up to 10% of kidney transplant recipients (KTRs). BKV isolates are categorized into four genotypes. It is currently unclear whether the four genotypes are also serotypes. To address this issue, we developed high-throughput serological assays based on antibody-mediated neutralization of BKV genotype I and IV reporter vectors (pseudoviruses). Neutralization-based testing of sera from mice immunized with BKV-I or BKV-IV virus-like particles (VLPs) or sera from naturally infected human subjects revealed that BKV-I specific serum antibodies are poorly neutralizing against BKV-IV and vice versa. The fact that BKV-I and BKV-IV are distinct serotypes was less evident in traditional VLP-based ELISAs. BKV-I and BKV-IV neutralization assays were used to examine BKV type-specific neutralizing antibody responses in KTRs at various time points after transplantation. At study entry, sera from 5% and 49% of KTRs showed no detectable neutralizing activity for BKV-I or BKV-IV neutralization, respectively. By one year after transplantation, all KTRs were neutralization seropositive for BKV-I, and 43% of the initially BKV-IV seronegative subjects showed evidence of acute seroconversion for BKV-IV neutralization. The results suggest a model in which BKV-IV-specific seroconversion reflects a de novo BKV-IV infection in KTRs who initially lack protective antibody responses capable of neutralizing genotype IV BKVs. If this model is correct, it suggests that pre-vaccinating prospective KTRs with a multivalent VLP-based vaccine against all BKV serotypes, or administration of BKV-neutralizing antibodies, might offer protection against graft loss or dysfunction due to BKV associated nephropathy

    Re: Interleukin-11 attenuates ifosfamide-induced hemorrhagic cystitis

    No full text
    OBJECTIVE: To investigate the possible protective effect of recombinant human interleukin-11 (rhIL-11) against ifosfamide (IFS)-induced hemorrhagic cystitis (HC) MATERIALS AND METHODS: Male Swiss mice (20-30g) were pretreated with rhIL-11 (25-625 mg, subcutaneously.) 30 min before intraperitoneal injection of IFS (400 mg/kg) or with saline (control group). Twelve hours later, HC was evaluated by bladder wet weight (BWW) to quantify edema, Evans blue extravasation (EBE) to measure vascular permeability, and macroscopic and microscopic analysis. All bladders were assessed by histopathological analysis RESULTS: rhIL-11 (at 125 and 625 mg) attenuated the IFS- induced increase of BWW (37.48% and 45.44%, respectively, p < 0.05) and EBE (62.35% and 56.47%, respectively, p < 0.05). IFS- induced macroscopic edema and hemorrhage and microscopic alterations, were also prevented by rhIL-11 at 625 mg. (p < 0.05) CONCLUSION: Our results demonstrate a protective effect of rhIL-11 on experimental IFS- induced HC, not previously reported

    A diagnostic classifier for pediatric chronic graft-versus-host disease: results of the ABLE/PBMTC 1202 study

    No full text
    The National Institutes of Health Consensus criteria for chronic graft-versus-host disease (cGVHD) diagnosis can be challenging to apply in children, making pediatric cGVHD diagnosis difficult. We aimed to identify diagnostic pediatric cGVHD biomarkers that would complement the current clinical criteria and help differentiate cGVHD from non-cGVHD. The Applied Biomarkers of Late Effects of Childhood Cancer (ABLE) study, open at 27 transplant centers, prospectively evaluated 302 pediatric patients after hematopoietic cell transplant (234 evaluable). Forty-four patients developed cGVHD. Mixed and fixed effect regression analyses were performed on diagnostic cGVHD onset blood samples for cellular and plasma biomarkers, with individual markers declared relevant if they met 3 criteria: an effect ratio ≥1.3 or ≤0.75; an area under the curve (AUC) of ≥0.60; and a P value \u3c5.814 × 10-4 (Bonferroni correction) (mixed effect) or \u3c.05 (fixed effect). To address the complexity of cGVHD diagnosis in children, we built a machine learning-based classifier that combined multiple cellular and plasma biomarkers with clinical factors. Decreases in regulatory natural killer cells, naïve CD4 T helper cells, and naïve regulatory T cells, and elevated levels of CXCL9, CXCL10, CXCL11, ST2, ICAM-1, and soluble CD13 (sCD13) characterize the onset of cGVHD. Evaluation of the time dependence revealed that sCD13, ST2, and ICAM-1 levels varied with the timing of cGVHD onset. The cGVHD diagnostic classifier achieved an AUC of 0.89, with a positive predictive value of 82% and a negative predictive value of 80% for diagnosing cGVHD. Our polyomic approach to building a diagnostic classifier could help improve the diagnosis of cGVHD in children but requires validation in future prospective studies. This trial was registered at www.clinicaltrials.gov as #NCT02067832
    corecore