32 research outputs found

    Homogeneous Test-bed for Cognitive Radio

    Get PDF
    In the current frequency allocation scheme, the radio spectrum is found to be heavily underutilized in time, frequency and space dimensions or any of their combination. To improve spectrum utilization, the unused contiguous or non-contiguous portion of the radio spectrum (spectrum hole) can be accessed opportunistically using cognitive radio technology provided it is interference free to the local users of the network. To reliably detect the spectrum holes, which is necessary to limit the interference, cognitive radio is required to have high time and frequency resolutions to detect radio technologies (e.g. GSM 900, 2.4 GHz WLAN) at the packet level in the transmitted channel to avoid misinterpretation of occupancy states in time and frequency. In addition, having high sensitivity and instantaneous dynamic range can enable cognitive radio to detect weak received signals and their detection in the presence of strong received signals. Besides these requirements, a large sensing bandwidth can increase the chances to find spectrum holes in multiple radio technologies concurrently. A chirp channel sounder receiver has been developed according to the aforementioned requirements with a bandwidth of 750 MHz to provide reliable detection of received signals in two frequency ranges; 1) 250 MHz to 1 GHz, 2) 2.2 GHz to 2.95 GHz. The developed receiver is capable of finding spectrum holes having a duration of 204.8 μs and a transmitted channel bandwidth up to 200 kHz. To explore the spectrum holes in the space dimensions, six chirp channel sounder receivers have been developed to form a homogeneous test-bed, which can be deployed and controlled independently. To experimentally validate the ability of the built receiver, short term spectrum occupancy measurements have been conducted to monitor 2.4 GHz WLAN traffic from a real wireless network to quantify the spectrum utilization and duration of spectrum holes in the time domain. It has been found that the radio spectrum is underutilized and empirical distribution of the duration of the spectrum hole can be modelled using lognormal and gamma distributions for prediction using a two state continuous time semi-Markov model. To experimentally validate the receiver’s capabilities in both the supported frequency ranges, long term spectrum occupancy measurements with 750 MHz sensing bandwidth have been performed and received signals have been detected at frame or packet level to quantify spectrum utilization. It has been found that the radio spectrum is highly underutilized at the measurement location and exhibits significant amount of spectrum holes in both time and frequency. To experimentally validate the functionalities of the homogeneous test-bed, short term spectrum occupancy have been performed to monitor 2.4 GHz WLAN traffic from a real wireless network. The experiment has been conducted using multiple receivers to quantify the amount of cooperation individual or multiple cognitive radio users can provide for reliable detection of spectrum holes in time, frequency and space. It has been found that the space dimension influences strongly the statistics of cooperation parameters

    Spectrum Occupancy Measurements and Analysis in 2.4 GHz WLAN

    Get PDF
    High time resolution spectrum occupancy measurements and analysis are presented for 2.4 GHz WLAN signals. A custom-designed wideband sensing engine records the received power of signals, and its performance is presented to select the decision threshold required to define the channel state (busy/idle). Two sets of measurements are presented where data were collected using an omni-directional and directional antenna in an indoor environment. Statistics of the idle time windows in the 2.4 GHz WLAN are analyzed using a wider set of distributions, which require fewer parameters to compute and are more practical for implementation compared to the widely-used phase type or Gaussian mixture distributions. For the omni-directional antenna, it was found that the lognormal and gamma distributions can be used to model the behavior of the idle time windows under different network traffic loads. In addition, the measurements show that the low time resolution and angle of arrival affect the statistics of the idle time window

    A Deep Neural Network-Based Multi-Frequency Path Loss Prediction Model from 0.8 GHz to 70 GHz

    Get PDF
    Large-scale fading models play an important role in estimating radio coverage, optimizing base station deployments and characterizing the radio environment to quantify the performance of wireless networks. In recent times, multi-frequency path loss models are attracting much interest due to their expected support for both sub-6 GHz and higher frequency bands in future wireless networks. Traditionally, linear multi-frequency path loss models like the ABG model have been considered, however such models lack accuracy. The path loss model based on a deep learning approach is an alternative method to traditional linear path loss models to overcome the time-consuming path loss parameters predictions based on the large dataset at new frequencies and new scenarios. In this paper, we proposed a feed-forward deep neural network (DNN) model to predict path loss of 13 different frequencies from 0.8 GHz to 70 GHz simultaneously in an urban and suburban environment in a non-line-of-sight (NLOS) scenario. We investigated a broad range of possible values for hyperparameters to search for the best set of ones to obtain the optimal architecture of the proposed DNN model. The results show that the proposed DNN-based path loss model improved mean square error (MSE) by about 6 dB and achieved higher prediction accuracy R2 compared to the multi-frequency ABG path loss model. The paper applies the XGBoost algorithm to evaluate the importance of the features for the proposed model and the related impact on the path loss prediction. In addition, the effect of hyperparameters, including activation function, number of hidden neurons in each layer, optimization algorithm, regularization factor, batch size, learning rate, and momentum, on the performance of the proposed model in terms of prediction error and prediction accuracy are also investigated

    Determination of the breast cancer tumor diameter using a UWB microwave antenna system

    Get PDF
    This paper presents a novel ultra-wideband microwave antenna system to detect breast cancer and estimate tumor diameter. The system operates within the frequency range of 1 to 12 GHz and comprises a microstrip-fed monopole antenna that encircles the breast to identify the presence of tumors. The study demonstrates that a tumor within the breast can be detected by observing changes in the distribution of current density within the breast tissue, particularly in regions containing tumors of varying sizes. The research findings reveal that the system can identify breast tumors with the highest recorded current density of 188 A/m2 in cases with a tumor diameter of 30 mm, while the lowest recorded current density is 140 A/m2 for tumors with a diameter of 5 mm. Furthermore, the highest Specific Absorption Rate (SAR) value measured at the surface of the breast model is 0.2 W/kg. To determine the diameter of the tumors, the system collects and analyzes backscattered waves from a breast model. The investigation covers tumors with diameters ranging from 1 mm to 35 mm, and the received signals are recorded. In contrast to prior research, this study introduces an empirical model with a remarkable accuracy rate of 92.28% for characterizing the diameter of breast tumors based on the measurement analysis.</p

    Model-Based Software Design of a Large-Scale Butler Matrix Beamformer for Hybrid 5G Subsystems

    Get PDF

    Experimental Evaluation of Hybrid Fibre−Wireless System for 5G Networks

    Get PDF
    This article describes a novel experimental study considering a multiband fibre–wireless system for constructing the transport network for fifth-generation (5G) networks. This study describes the development and testing of a 5G new radio (NR) multi-input multi-output (MIMO) hybrid fibre–wireless (FiWi) system for enhanced mobile broadband (eMBB) using digital pre-distortion (DPD). Analog radio over fibre (A-RoF) technology was used to create the optical fronthaul (OFH) that includes a 3 GHz supercell in a long-range scenario as well as a femtocell scenario using the 20 GHz band. As a proof of concept, a Mach Zehnder modulator with two independent radio frequency waveforms modifies a 1310 nm optical carrier using a distributed feedback laser across 10 km of conventional standard single-mode fibre. It may be inferred that a hybrid FiWi-based MIMO-enabled 5G NR system based on OFH could be a strong competitor for future mobile haul applications. Moreover, a convolutional neural network (CNN)-based DPD is used to improve the performance of the link. The error vector magnitude (EVM) performance for 5G NR bands is predicted to fulfil the Third Generation Partnership Project’s (3GPP) Release 17 standards

    Design and Experimental Performance Evaluation of a Single-Layer Polarization-Insensitive Asymmetric Microwave Metasurface Absorber

    Get PDF
    This work reports on designing and experimentally evaluating an asymmetric metasurface absorber (MA) for wideband and polarization-insensitive operation in the C- and partial X-bands. As the core building block of the radio frequency (RF) subsystem, a unit-cell has been proposed, comprised of a dual-cut square-ring resonator (SRR) and a square patch placed above an FR4 substrate backed by a copper plate, inherently anisotropic. This arrangement efficiently converts linearly-polarized waves to cross-polarized reflected waves, achieving an 80% conversion efficiency over a wide bandwidth (BW) of 4.72–8.49 GHz. The reflected cross-polarized waves are also inhibited by strategically incorporating just three resistors on the top surface. Therefore, the polarization converter (PC) is transformed into an MA. In contrast to previously known MAs that depended on structural symmetry to maintain stable absorption performances across all polarization angles, this newly proposed asymmetric MA breaks that constraint. It achieves consistent absorption irrespective of variations in the polarization angle of the normal incident waves. The full-wave simulations have resulted in over 80% absorption, closely resembling the initial PC’s reflected BW. This MA has a compact assembly with a size of 0.22λ × 0.22λ and a thickness of 0.07λ. Absorption outputs are experimentally evaluated, resulting in more than 80% absorption, covering almost the entire C-band. This device can be used in different applications, such as radar cross-section assessments and energy-harvesting front-ends
    corecore