136 research outputs found
A quality assurance phantom for electronic portal imaging devices
Electronic portal imaging device (EPID) plays an important role in radiation therapy portal imaging, geometric and dosimetric verification. Consistent image quality and stable radiation response is necessary for proper utilization that requires routine quality assurance (QA). A commercial ‘EPID QC’ phantom weighing 3.8 kg with a dimension of 25 × 25 × 4.8 cm3 is used for EPID QA. This device has five essential tools to measure the geometric accuracy, signal‐to‐noise ratio (SNR), dose linearity, and the low‐ and the high‐contrast resolutions. It is aligned with beam divergence to measure the imaging and geometric parameters in both X and Y directions, and can be used as a baseline check for routine QA. The low‐contrast tool consists of a series of holes with various diameters and depths in an aluminum slab, very similar to the Las Vegas phantom. The high‐resolution contrast tool provides the modulation transfer function (MTF) in both the x‐ and y‐dimensions to measure the focal spot of linear accelerator that is important for imaging and small field dosimetry. The device is tested in different institutions with various amorphous silicon imagers including Elekta, Siemens and Varian units. Images of the QA phantom were acquired at 95.2 cm source‐skin‐distance (SSD) in the range 1–15 MU for a 26 × 26 cm2 field and phantom surface is set normal to the beam direction when gantry is at 0° and 90°. The epidSoft is a software program provided with the EPID QA phantom for analysis of the data. The preliminary results using the phantom on the tested EPID showed very good low‐contrast resolution and high resolution, and an MTF (0.5) in the range of 0.3–0.4 lp/mm. All imagers also exhibit satisfactory geometric accuracy, dose linearity and SNR, and are independent of MU and spatial orientations. The epidSoft maintains an image analysis record and provides a graph of the temporal variations in imaging parameters. In conclusion, this device is simple to use and provides testing on basic and advanced imaging parameters for daily QA on any imager used in clinical practice
Computed tomography imaging parameters for inhomogeneity correction in radiation treatment planning
Modern treatment planning systems provide accurate dosimetry in heterogeneous media (such as a patient' body) with the help of tissue characterization based on computed tomography (CT) number. However, CT number depends on the type of scanner, tube voltage, field of view (FOV), reconstruction algorithm including artifact reduction and processing filters. The impact of these parameters on CT to electron density (ED) conversion had been subject of investigation for treatment planning in various clinical situations. This is usually performed with a tissue characterization phantom with various density plugs acquired with different tube voltages (kilovoltage peak), FOV reconstruction and different scanners to generate CT number to ED tables. This article provides an overview of inhomogeneity correction in the context of CT scanning and a new evaluation tool, difference volume dose-volume histogram (DVH), dV-DVH. It has been concluded that scanner and CT parameters are important for tissue characterizations, but changes in ED are minimal and only pronounced for higher density materials. For lungs, changes in CT number are minimal among scanners and CT parameters. Dosimetric differences for lung and prostate cases are usually insignificant (<2%) in three-dimensional conformal radiation therapy and < 5% for intensity-modulated radiation therapy (IMRT) with CT parameters. It could be concluded that CT number variability is dependent on acquisition parameters, but its dosimetric impact is pronounced only in high-density media and possibly in IMRT. In view of such small dosimetric changes in low-density medium, the acquisition of additional CT data for financially difficult clinics and countries may not be warranted
A semi-empirical model for the therapeutic range shift estimation caused by inhomogeneities in proton beam therapy
The purpose of this study was to devise a simple semi-empirical model to estimate the range shift in clinical practices with high-Z inhomogeneity in proton beam. A semi-empirical model utilizing the logarithmic dependence on Z in stopping power from Bohr's classical approach has been developed to calculate the range shift due to the presence of inhomogeneity. Range shift from metallic plates of atomic number Z of various thicknesses were measured in water using a parallel plate ionization chamber and calculated with the FLUKA Monte Carlo code. The proton range shifts for bone and polymethyl methacrylate (PMMA) were estimated using the semi-empirical model and compared with Monte Carlo calculation. The semi-empirical equation to determine range shift and water equivalent thickness is presented. The model predicts a shift of the therapeutic range to within 2.5% accuracy for initial proton energies of 50 to 250 MeV and atomic numbers from 3.3 (effective Z for water) to 82. This equation is independent of beam energy, and thus provides range shift from high-Z materials without the knowledge of proton energy. The proposed method of calculating the therapeutic range shift accurately requires only knowledge of the effective or actual atomic number of the inhomogeneity and the thickness of the inhomogeneity along the beam direction. The model generalizes the range shift calculation for any material based on its effective atomic number, and permits reliable prediction of the range shift for material combinations where no data is currently available. The proposed model can be readily implemented in routine clinical practice for proton range shift estimation and quality assurance on the treatment planning
Ultrasound Driven Biofilm Removal for Stable Power Generation in Microbial Fuel Cell
Anodic biofilm plays a crucial role in bioelectrochemical system to make it sustainable for long-term performance. However, the accumulation of dead cells over time within the anode biofilm can be particularly detrimental for current generation. In this study, the effect of ultrasound on anode biofilm thickness was investigated in microbial fuel cells (MFCs). Ultrasonic treatment was employed for different durations to evaluate its ability to control the thickness of the biofilm to maintain stable power generation. Cell viability count and field emission scanning electron microscopy (FESEM) analysis of the biofilms over time showed that the number of dead cells increased with the increase of biofilm thickness, and eventually exceeded the number of live cells by many-fold. Electrochemical impedance spectroscopy (EIS) analysis indicated that the high polarization resistance appeared due to the dead layer formation, and thus the catalytic efficiency was reduced in MFCs. The stable power generation was achieved by employing ultrasonic treatment for 30 min every 6 days with some initial exception. The low frequency ultrasound treatment successfully dislodged the ineffective biofilm from the surface of the anode. Moreover, the ultrasound could increase the mass transfer rate of the nutrients and cellular waste through the biofilm leading to the increase in cell growth. Therefore, ultrasonic treatment is verified as an efficient method to control the thickness of the biofilm as well as enhance the cell viability in biofilm thereby maintaining the stable power generation in the MFC
Augmentation of Air Cathode Microbial Fuel Cell Performance using Wild Type Klebsiella Variicola
In the present work, simultaneous power generation and wastewater treatment in the single chamber air cathode microbial fuel cell (MFC) have been enhanced by introducing wild-type Klebsiella variicola (K. variicola) as an efficient inoculum for the anode operated with palm oil mill effluent (POME). K. variicola was isolated from municipal wastewater (MWW) and identified using BIOLOG gene III analysis, PCR and sequencing. The performance of K. variicola in MFC was evaluated by polarization curve measurement, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) analysis. The MFC with K. variicola achieved a maximum power density of about 1.7 W m−3 which is comparatively higher than most widely used anaerobic sludge (215 mW m−3) as an inoculum whereas COD removal efficiency is (43%) lower than anaerobic sludge (74%). Moreover, K. variicola has the ability to produce electron shuttles and to form biofilms on the electrode surface which helps to significantly reduce the anode charge transfer (Rct) resistance compared to the anaerobic sludge. These results revealed the potential of K. variicola to be used in MFC
Carbon Nanotube-Modified MnO2: An Efficient Electrocatalyst for Oxygen Reduction Reaction
In this work, manganese dioxide/carbon nanotube (MnO2/CNT) have been synthesized by sonochemical-coprecipitation method and demonstrated that it could be an effective electrocatalyst for oxygen reduction reaction (ORR). Moreover, the effect of CNT inclusion with MnO2 was also investigated for ORR. The physical and electrochemical properties of the MnO2/CNT were examined by powder X-ray diffraction (XRD), Fourier Transform Infrared (FT-IR) spectroscopy, Brunauer-Emmett-Teller (BET), Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy/Energy Dispersive X-ray (FESEM/EDX), Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS), Mott-Schottky and Rotating Disk Electrode (RDE) analysis. CV showed higher currents for the ORR in MnO2/CNT than CNT; however, ORR current dropped when the MnO2 loading was increased from 20–40 %. The EIS analysis showed that charge-transfer resistance for MnO2/CNT was significantly lower compared to the MnO2 indicating that MnO2 has good contact with CNT and the composite possess high electrical conductivity. Mott-Schottky results demonstrated that incorporation of CNT into MnO2 resulted in producing larger electron density in n-type MnO2/CNT compared to MnO2 which is liable for efficient electron donation from the Mn3+ to adsorbed oxygen in the rate determining step. RDE results showed that MnO2/CNT follows 4e− transfer pathway, indicating its ability to act as an effective ORR electrocatalyst
Screening of Streptococcus suis in swine workers of selected states in Peninsular Malaysia
Background and Aim: Streptococcus suis is a zoonotic pathogen that is highly associated with contact between live pigs and raw pig material. In view of the recent reports of human infections in Malaysia, epidemiological data on the status of S. suis in the human population, especially among people working closely with pigs and/or raw pork, should be provided. The aim of this study was to detect S. suis among individuals working in the swine industry in several major pig production areas in Peninsular Malaysia.
Materials and Methods: Demographic information, exposure determinants, and oral swabs were collected from swine personnel, including farmers, butchers, and veterinarians. Oral swabs were subjected to bacterial isolation and conventional polymerase chain reaction (PCR) assays for S. suis detection.
Results: The study included 40 participants working in the swine industry, with a predominant representation of males (62.5%) and Malaysian Chinese individuals (60.0%) who consumed pork (92.5%). Notably, none of the participants reported consuming raw or partially cooked pork. In spite of their occupational exposure risk, none of the oral swabs showed positive results for S. suis infection.
Conclusion: To the best of our knowledge, this is the first report and detection study of S. suis using oral swabs obtained from swine personnel in Peninsular Malaysia
Recommended from our members
Interfractional Variations in the Setup of Pelvic Bony Anatomy and Soft Tissue, and Their Implications on the Delivery of Proton Therapy for Localized Prostate Cancer
Purpose
To quantify daily variations in the anatomy of patients undergoing radiation therapy for prostate carcinoma, to estimate their effect on dose distribution, and to evaluate the effectiveness of current standard planning and set-up approaches employed in proton therapy.
Methods
We used series of CT data, which included the pre-treatment scan, and between 21 and 43 in-room scans acquired on different treatment days, from 10 patients treated with intensity-modulated radiation therapy at Morristown Memorial Hospital. Variations in femur rotation angles, thickness of subcutaneous adipose tissue, and physical depth to the distal surface of the prostate for lateral beam arrangement were recorded. Proton dose distributions were planned with the standard approach. Daily variations in the location of the prescription iso-dose were evaluated.
Results
In all 10 datasets, substantial variation was observed in the lateral tissue thickness (standard deviation of 1.7–3.6 mm for individual patients, variations of over 5 mm from the planning CT observed in all series), and femur rotation angle (standard deviation between 1.3–4.8°, with the maximum excursion exceeding 10° in 6 out of 10 datasets). Shifts in the position of treated volume (98% iso-dose) were correlated with the variations in the lateral tissue thickness.
Conclusions
Analysis suggests that, combined with image-guided set-up verification, the range compensator expansion technique prevents loss of dose to target due to femur rotation and soft tissue deformation, in the majority of cases. Anatomic changes coupled with the uncertainties of particle penetration in tissue restrict possibilities for margin reduction in proton therapy of prostate cancer
Interest-driven creator theory: towards a theory of learning design for Asia in the twenty-first century
Asian education is known for its examination-driven orientation, with the downsides of distorting the processes of learning and teaching, diminishing students’ interest in learning, and failing to nurture twenty-first century competencies among students. As a group of Asian researchers, we have been developing Interest-Driven Creator (IDC) Theory, a design theory based on three anchored concepts, namely interest, creation, and habit. Each of these anchored concepts is represented by a loop composed of three components. In the interest loop, the three components are triggering, immersing, and extending. The components of the creation loop are imitating, combining, and staging. The habit loop consists of cuing environment, routine, and harmony. These three loops are interconnected in various ways, with their characteristics revealed by the design process. We hypothesize that technology-supported learning activities that are designed with reference to IDC Theory will enable students to develop interest in learning, be immersed in the creation process, and, by repeating this process in their daily routines, strengthen habits of creation. Furthermore, students will excel in learning performance, develop twenty-first century competencies, and become lifelong interest-driven creators. To sharpen our understanding and further the development of the theory, we need more discussion and collaborative efforts in the community. Hypotheses arising from this theory can be tested, revised, or refined by setting up and investigating IDC Theory-based experimental sites. By disseminating the framework, foundations, and practices to the various countries and regions of Asia, we hope that it will bring about compelling examples and hence a form of quality education for the twenty-first century, which is an alternative to the examination-driven education system. In this paper, we present an overall introduction to IDC Theory and its history, and discuss some of the steps for advancing it in the future
- …