480 research outputs found

    Advances in imaging THGEM-based detectors

    Get PDF
    The thick GEM (THGEM) [1] is an "expanded" GEM, economically produced in the PCB industry by simple drilling and etching in G-10 or other insulating materials (fig. 1). Similar to GEM, its operation is based on electron gas avalanche multiplication in sub-mm holes, resulting in very high gain and fast signals. Due to its large hole size, the THGEM is particularly efficient in transporting the electrons into and from the holes, leading to efficient single-electron detection and effective cascaded operation. The THGEM provides true pixilated radiation localization, ns signals, high gain and high rate capability. For a comprehensive summary of the THGEM properties, the reader is referred to [2, 3]. In this article we present a summary of our recent study on THGEM-based imaging, carried out with a 10x10 cm^2 double-THGEM detector.Comment: 3 pages, 3 figures. Presented at the 10th Pisa Meeting on Advanced Detectors; ELBA-Italy; May 21-27 200

    Vertex Fault Tolerant Additive Spanners

    Full text link
    A {\em fault-tolerant} structure for a network is required to continue functioning following the failure of some of the network's edges or vertices. In this paper, we address the problem of designing a {\em fault-tolerant} additive spanner, namely, a subgraph HH of the network GG such that subsequent to the failure of a single vertex, the surviving part of HH still contains an \emph{additive} spanner for (the surviving part of) GG, satisfying dist(s,t,H∖{v})≀dist(s,t,G∖{v})+ÎČdist(s,t,H\setminus \{v\}) \leq dist(s,t,G\setminus \{v\})+\beta for every s,t,v∈Vs,t,v \in V. Recently, the problem of constructing fault-tolerant additive spanners resilient to the failure of up to ff \emph{edges} has been considered by Braunschvig et. al. The problem of handling \emph{vertex} failures was left open therein. In this paper we develop new techniques for constructing additive FT-spanners overcoming the failure of a single vertex in the graph. Our first result is an FT-spanner with additive stretch 22 and O~(n5/3)\widetilde{O}(n^{5/3}) edges. Our second result is an FT-spanner with additive stretch 66 and O~(n3/2)\widetilde{O}(n^{3/2}) edges. The construction algorithm consists of two main components: (a) constructing an FT-clustering graph and (b) applying a modified path-buying procedure suitably adopted to failure prone settings. Finally, we also describe two constructions for {\em fault-tolerant multi-source additive spanners}, aiming to guarantee a bounded additive stretch following a vertex failure, for every pair of vertices in S×VS \times V for a given subset of sources S⊆VS\subseteq V. The additive stretch bounds of our constructions are 4 and 8 (using a different number of edges)

    A latent variable ranking model for content-based retrieval

    Get PDF
    34th European Conference on IR Research, ECIR 2012, Barcelona, Spain, April 1-5, 2012. ProceedingsSince their introduction, ranking SVM models [11] have become a powerful tool for training content-based retrieval systems. All we need for training a model are retrieval examples in the form of triplet constraints, i.e. examples specifying that relative to some query, a database item a should be ranked higher than database item b. These types of constraints could be obtained from feedback of users of the retrieval system. Most previous ranking models learn either a global combination of elementary similarity functions or a combination defined with respect to a single database item. Instead, we propose a “coarse to fine” ranking model where given a query we first compute a distribution over “coarse” classes and then use the linear combination that has been optimized for queries of that class. These coarse classes are hidden and need to be induced by the training algorithm. We propose a latent variable ranking model that induces both the latent classes and the weights of the linear combination for each class from ranking triplets. Our experiments over two large image datasets and a text retrieval dataset show the advantages of our model over learning a global combination as well as a combination for each test point (i.e. transductive setting). Furthermore, compared to the transductive approach our model has a clear computational advantages since it does not need to be retrained for each test query.Spanish Ministry of Science and Innovation (JCI-2009-04240)EU PASCAL2 Network of Excellence (FP7-ICT-216886

    THGEM operation in Ne and Ne/CH4

    Full text link
    The operation of Thick Gaseous Electron Multipliers (THGEM) in Ne and Ne/CH4 mixtures, features high multiplication factors at relatively low operation potentials, in both single- and double-THGEM configurations. We present some systematic data measured with UV-photons and soft x-rays, in various Ne mixtures. It includes gain dependence on hole diameter and gas purity, photoelectron extraction efficiency from CsI photocathodes into the gas, long-term gain stability and pulse rise-time. Position resolution of a 100x100 mm^2 X-rays imaging detector is presented. Possible applications are discussed.Comment: Submitted to JINST, 25 pages, 33 figure

    Interactive Content-Based Image Retrieval with Deep Neural Networks

    Get PDF
    Peer reviewe

    The color of smiling: computational synaesthesia of facial expressions

    Get PDF
    This note gives a preliminary account of the transcoding or rechanneling problem between different stimuli as it is of interest for the natural interaction or affective computing fields. By the consideration of a simple example, namely the color response of an affective lamp to a sensed facial expression, we frame the problem within an information- theoretic perspective. A full justification in terms of the Information Bottleneck principle promotes a latent affective space, hitherto surmised as an appealing and intuitive solution, as a suitable mediator between the different stimuli.Comment: Submitted to: 18th International Conference on Image Analysis and Processing (ICIAP 2015), 7-11 September 2015, Genova, Ital

    DeltaPhish: Detecting Phishing Webpages in Compromised Websites

    Full text link
    The large-scale deployment of modern phishing attacks relies on the automatic exploitation of vulnerable websites in the wild, to maximize profit while hindering attack traceability, detection and blacklisting. To the best of our knowledge, this is the first work that specifically leverages this adversarial behavior for detection purposes. We show that phishing webpages can be accurately detected by highlighting HTML code and visual differences with respect to other (legitimate) pages hosted within a compromised website. Our system, named DeltaPhish, can be installed as part of a web application firewall, to detect the presence of anomalous content on a website after compromise, and eventually prevent access to it. DeltaPhish is also robust against adversarial attempts in which the HTML code of the phishing page is carefully manipulated to evade detection. We empirically evaluate it on more than 5,500 webpages collected in the wild from compromised websites, showing that it is capable of detecting more than 99% of phishing webpages, while only misclassifying less than 1% of legitimate pages. We further show that the detection rate remains higher than 70% even under very sophisticated attacks carefully designed to evade our system.Comment: Preprint version of the work accepted at ESORICS 201

    Connecting Dualities and Machine Learning

    Get PDF
    Dualities are widely used in quantum field theories and string theory to obtain correlation functions at high accuracy. Here we present examples where dual data representations are useful in supervised classification, linking machine learning and typical tasks in theoretical physics. We then discuss how such beneficial representations can be enforced in the latent dimension of neural networks. We find that additional contributions to the loss based on feature separation, feature matching with respect to desired representations, and a good performance on a ‘simple’ correlation function can lead to known and unknown dual representations. This is the first proof of concept that computers can find dualities. We discuss how our examples, based on discrete Fourier transformation and Ising models, connect to other dualities in theoretical physics, for instance Seiberg duality

    Computational analysis of the synergy among multiple interacting genes

    Get PDF
    Diseases such as cancer are often related to collaborative effects involving interactions of multiple genes within complex pathways, or to combinations of multiple SNPs. To understand the structure of such mechanisms, it is helpful to analyze genes in terms of the purely cooperative, as opposed to independent, nature of their contributions towards a phenotype. Here, we present an information-theoretic analysis that provides a quantitative measure of the multivariate synergy and decomposes sets of genes into submodules each of which contains synergistically interacting genes. When the resulting computational tools are used for the analysis of gene expression or SNP data, this systems-based methodology provides insight into the biological mechanisms responsible for disease
    • 

    corecore