17 research outputs found

    The glycoside oleandrin reduces glioma growth with direct and indirect effects on tumor cells

    Get PDF
    Oleandrin is a glycoside that inhibits the ubiquitous enzyme Na(+)/K(+)-ATPase. In addition to its known effects on cardiac muscle, recent in vitro and in vivo evidence highlighted its potential for anticancer properties. Here, we evaluated for the first time the effect of oleandrin on brain tumors. To this aim, mice were transplanted with human or murine glioma and analyzed for tumor progression upon oleandrin treatment. In both systems, oleandrin impaired glioma development, reduced tumor size, and inhibited cell proliferation. We demonstrated that oleandrin does the following: (1) enhances the brain-derived neurotrophic factor (BDNF) level in the brain; (2) reduces both microglia/macrophage infiltration and CD68 immunoreactivity in the tumor mass; (3) decreases astrogliosis in peritumoral area; and (4) reduces glioma cell infiltration in healthy parenchyma. In BDNF-deficient mice (bdnftm1Jae/J) and in glioma cells silenced for TrkB receptor expression, oleandrin was not effective, indicating a crucial role for BDNF in oleandrin's protective and antitumor functions. In addition, we found that oleandrin increases survival of temozolomide-treated mice. These results encourage the development of oleandrin as possible coadjuvant agent in clinical trials of glioma treatment.SIGNIFICANCE STATEMENT In this work, we paved the road for a new therapeutic approach for the treatment of brain tumors, demonstrating the potential of using the cardioactive glycoside oleandrin as a coadjuvant drug to standard chemotherapeutics such as temozolomide. In murine models of glioma, we demonstrated that oleandrin significantly increased mouse survival and reduced tumor growth both directly on tumor cells and indirectly by promoting an antitumor brain microenvironment with a key protective role played by the neurotrophin brain-derived neurotrophic factor

    Enriched environment reduces glioma growth through immune and non-immune mechanisms in mice

    Get PDF
    Mice exposed to standard (SE) or enriched environment (EE) were transplanted with murine or human glioma cells and differences in tumour development were evaluated. We report that EE exposure affects: (i) tumour size, increasing mice survival; (ii) glioma establishment, proliferation and invasion; (iii) microglia/macrophage (M/Mφ) activation; (iv) natural killer (NK) cell infiltration and activation; and (v) cerebral levels of IL-15 and BDNF. Direct infusion of IL-15 or BDNF in the brain of mice transplanted with glioma significantly reduces tumour growth. We demonstrate that brain infusion of IL-15 increases the frequency of NK cell infiltrating the tumour and that NK cell depletion reduces the efficacy of EE and IL-15 on tumour size and of EE on mice survival. BDNF infusion reduces M/Mφ infiltration and CD68 immunoreactivity in tumour mass and reduces glioma migration inhibiting the small G protein RhoA through the truncated TrkB.T1 receptor. These results suggest alternative approaches for glioma treatment

    KCa3.1 channel inhibition sensitizes malignant gliomas to temozolomide treatment

    Get PDF
    Malignant gliomas are among the most frequent and aggressive cerebral tumors, characterized by high proliferative and invasive indexes. Standard therapy for patients, after surgery and radiotherapy, consists of temozolomide (TMZ), a methylating agent that blocks tumor cell proliferation. Currently, there are no therapies aimed at reducing tumor cell invasion. Ion channels are candidate molecular targets involved in glioma cell migration and infiltration into the brain parenchyma. In this paper we demonstrate that: i) blockade of the calcium-activated potassium channel KCa3.1 with TRAM-34 has co-adjuvant effects with TMZ, reducing GL261 glioma cell migration, invasion and colony forming activity, increasing apoptosis, and forcing cells to pass the G2/M cell cycle phase, likely through cdc2 de-phosphorylation; ii) KCa3.1 silencing potentiates the inhibitory effect of TMZ on glioma cell viability; iii) the combination of TMZ/TRAM-34 attenuates the toxic effects of glioma conditioned medium on neuronal cultures, through a microglia dependent mechanism since the effect is abolished by clodronate-induced microglia killing; iv) TMZ/TRAM-34 co-treatment increases the number of apoptotic tumor cells, and the mean survival time in a syngeneic mouse glioma model (C57BL6 mice implanted with GL261 cells); v) TMZ/TRAM-34 co-treatment reduces cell viability of GBM cells and cancer stem cells (CSC) freshly isolated from patients.Taken together, these data suggest a new therapeutic approach for malignant glioma, targeting both glioma cell proliferating and migration, and demonstrate that TMZ/TRAM-34 co-treatment affects both glioma cells and infiltrating microglia, resulting in an overall reduction of tumor cell progression

    Microglia-derived microvesicles affect microglia phenotype in glioma

    Get PDF
    Extracellular-released vesicles (EVs), such as microvesicles (MV) and exosomes (Exo) provide a new type of inter-cellular communication, directly transferring a ready to use box of information, consisting of proteins, lipids and nucleic acids. In the nervous system, EVs participate to neuron-glial cross-talk, a bidirectional communication important to preserve brain homeostasis and, when dysfunctional, involved in several CNS diseases. We investigated whether microglia-derived EVs could be used to transfer a protective phenotype to dysfunctional microglia in the context of a brain tumor. When MV, isolated from microglia stimulated with LPS/IFNg were brain injected in glioma-bearing mice, we observed a phenotype switch of tumor associated myeloid cells (TAMs) and a reduction of tumor size. Our findings indicate that the MV cargo, which contains upregulated transcripts for several inflammation-related genes, can transfer information in the brain of glioma bearing mice modifying microglial gene expression, reducing neuronal death and glioma invasion, thus promoting the recovery of brain homeostasis

    Microglia modulates hippocampal synaptic transmission and sleep duration along the light/dark cycle

    Get PDF
    Microglia, the brain's resident macrophages, actively contributes to the homeostasis of cerebral parenchyma by sensing neuronal activity and supporting synaptic remodeling and plasticity. While several studies demonstrated different roles for astrocytes in sleep, the contribution of microglia in the regulation of sleep/wake cycle and in the modulation of synaptic activity in the different day phases has not been deeply investigated. Using light as a zeitgeber cue, we studied the effects of microglial depletion with the colony stimulating factor-1 receptor antagonist PLX5622 on the sleep/wake cycle and on hippocampal synaptic transmission in male mice. Our data demonstrate that almost complete microglial depletion increases the duration of NREM sleep and reduces the hippocampal excitatory neurotransmission. The fractalkine receptor CX3CR1 plays a relevant role in these effects, because cx3cr1GFP/GFP mice recapitulate what found in PLX5622-treated mice. Furthermore, during the light phase, microglia express lower levels of cx3cr1 and a reduction of cx3cr1 expression is also observed when cultured microglial cells are stimulated by ATP, a purinergic molecule released during sleep. Our findings suggest that microglia participate in the regulation of sleep, adapting their cx3cr1 expression in response to the light/dark phase, and modulating synaptic activity in a phase-dependent manner.Bordeaux Region Aquitaine Initiative for Neuroscienc

    Fractalkine (CX3CL1) enhances hippocampal N-methyl-D-aspartate receptor (NMDAR) function via D-serine and adenosine receptor type A2 (A2AR) activity.

    Get PDF
    BACKGROUND: N-Methyl-D-aspartate receptors (NMDARs) play fundamental roles in basic brain functions such as excitatory neurotransmission and learning and memory processes. Their function is largely regulated by factors released by glial cells, including the coagonist d-serine. We investigated whether the activation of microglial CX3CR1 induces the release of factors that modulate NMDAR functions. METHODS: We recorded the NMDAR component of the field excitatory postsynaptic potentials (NMDA-fEPSPs) elicited in the CA1 stratum radiatum of mouse hippocampal slices by Shaffer collateral stimulation and evaluated D-serine content in the extracellular medium of glial primary cultures by mass spectrometry analysis. RESULTS: We demonstrated that CX3CL1 increases NMDA-fEPSPs by a mechanism involving the activity of the adenosine receptor type A2 (A2AR) and the release of the NMDAR coagonist D-serine. Specifically (1) the selective A2AR blocker 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH58261) and the genetic ablation of A2AR prevent CX3CL1 action while the A2AR agonist 5-(6-amino-2-(phenethylthio)-9H-purin-9-yl)-N-ethyl-3,4-dihydroxytetrahydrofuran-2-carboxamide (VT7) mimics CX3CL1 effect, and (2) the selective blocking of the NMDAR glycine (and D-serine) site by 5,7-dicholorokynurenic acid (DCKA), the enzymatic degradation of D-serine by D-amino acid oxidase (DAAO) and the saturation of the coagonist site by D-serine, all block the CX3CL1 effect. In addition, mass spectrometry analysis demonstrates that stimulation of microglia and astrocytes with CX3CL1 or VT7 increases D-serine release in the extracellular medium. CONCLUSIONS: CX3CL1 transiently potentiates NMDAR function though mechanisms involving A2AR activity and the release of D-serine

    CX3CL1 protects neurons against excitotoxicity enhancing GLT-1 activity on astrocytes

    No full text
    In this paper we show for the first time that: i) astrocytes are required for the neuroprotective activity of CX3CL1 against excitotoxicity; ii) inhibition of the glutamate transporter 1 (GLT-1) prejudices CX3CL1-mediated neuroprotection; iii) CX3CL1 increases GLT-1 activity on astrocytes. The modulation of GLT-1 activity induced by CX3CL1 on astrocytes requires the presence and the activity of A1 adenosine receptor (A1R), being blocked by the specific antagonist DPCPX and absent in A1R-/- astrocytes. These data introduce the astrocytes as active players in CX3CL1-mediated signaling between microglia and neurons, identifying GLT-1 as a key mediator of the neuroprotective activity of CX3CL1. © 2013 Elsevier B.V
    corecore