109 research outputs found
VDAC3 as a sensor of oxidative state of the intermembrane space of mitochondria: the putative role of cysteine residue modifications
Voltage-Dependent Anion selective Channels (VDAC) are pore-forming mitochondrial outer membrane proteins. In mammals VDAC3, the least characterized isoform, presents a set of cysteines predicted to be exposed toward the intermembrane space. We find that cysteines in VDAC3 can stay in different oxidation states. This was preliminary observed when, in our experimental conditions, completely lacking any reducing agent, VDAC3 presented a pattern of slightly different electrophoretic mobilities. This observation holds true both for rat liver mitochondrial VDAC3 and for recombinant and refolded human VDAC3. Mass spectroscopy revealed that cysteines 2 and 8 can form a disulfide bridge in native VDAC3. Single or combined site-directed mutagenesis of cysteines 2, 8 and 122 showed that the protein mobility in SDS-PAGE is influenced by the presence of cysteine and by the redox status. In addition, cysteines 2, 8 and 122 are involved in the stability control of the pore as shown by electrophysiology, complementation assays and chemico-physical characterization. Furthermore, a positive correlation between the pore conductance of the mutants and their ability to complement the growth of porin-less yeast mutant cells was found. Our work provides evidence for a complex oxidation pattern of a mitochondrial protein not directly involved in electron transport. The most likely biological meaning of this behavior is to buffer the ROS load and keep track of the redox level in the intermembrane space, eventually signaling it through conformational change
Atoms and Nanoparticles of Transition Metals as Catalysts for Hydrogen Desorption from Magnesium Hydride
The hydrogen desorption kinetics of composite materials made of magnesium hydride with transition metal additives (TM: Nb, Fe, and Zr) was studied by several experimental techniques showing that (i) a few TM at.% concentrations catalyse the H2desorption process, (ii) the H2desorption kinetics results stabilized after a few H2sorption cycles when TM atoms aggregate by forming nanoclusters; (iii) the catalytic process occurs also at TM concentration as low as 0.06 at.% when TM atoms clustering is negligible, and (iv) mixed Fe and Zr additives produce faster H2desorption kinetics than single additive. The improved H2desorption kinetics of the composite materials can be explained by assuming that the interfaces between the MgH2matrix and the TM nanoclusters act as heterogeneous sites for the nucleation of the Mg phase in the MgH2matrix and promote the formation of fast diffusion channels for H migrating atoms.</jats:p
Polylactic acid-lauryl functionalized nanocellulose nanocomposites: Microstructural, thermo-mechanical and gas transport properties
Thermo-mechanical and gas transport properties of polylactic acid (PLA) matrix containing various amounts (from 1 to 20 wt%) of nanocellulose esterified with lauryl chains (LNC) were investigated on solvent cast film of about 50 micron. Scanning electron microscopy indicated that, up to a filler content of 6.5 wt%, LNC was well dispersed or formed small, sub-micrometric clusters. At higher filler contents, oval aggregates in the micrometric range were detected. The addition of LNC did not change the matrix glass transition temperature and melting temperature. Concurrently, as LNC content increased, both elastic and storage moduli at room temperature exhibited a sharp decrease up to 5 wt% of filler, and a lower reduction for LCN concentration of 10\u201320 wt.%. Nanocomposites with 3 and 5 wt% of LNC showed the highest strain at break and a large amount of plastic deformation due to a strong interfacial adhesion between the PLA and filler particles. For higher LNC fractions the presence of aggregates weakened the nanocomposite leading to lower values of maximum stress and strain at break. With the addition of LNC particles, gas barrier properties of the PLA film versus deuterium, nitrogen and carbon dioxide were improved up to a critical LNC concentration of 6.5 wt%, where the gas permeability of the nanocomposite resulted to be 70% lower than that of the PLA matrix. At higher filler contents, large LNC aggregates increased the gas permeability of the nanocomposites
Gas transport and free volume study in polyethylene based epoxy membranes
The mechanism of gas diffusivity in amine modified epoxy membranes is studied in the frame of free volume properties. Epoxy membranes with two different crosslinking densities and composite with Graphene nanoplatelets were prepared by solvent casting method. The free volume parameters measured by Positron Annihilation Spectroscopy (PAS) show inverse correlation with crosslinking density of the samples. The gas permeability and diffusivity for CO2 have been studied by gas permeation measurements. The study reveals that the gas permeability and diffusivity change significantly as a function of crosslinking density, free volumes and structural relaxations of the molecular chains
F-ATPase ofDrosophila melanogasterForms 53-Picosiemen (53-pS) Channels Responsible for Mitochondrial Ca2+-induced Ca2+Release
Mitochondria of Drosophila melanogaster undergo Ca2+-induced Ca2+ release through a putative channel (mCrC) that has several regulatory features of the permeability transition pore (PTP). The PTP is an inner membrane channel that forms from F-ATPase, possessing a conductance of 500 picosiemens (pS) in mammals and of 300 pS in yeast. In contrast to the PTP, the mCrC of Drosophila is not permeable to sucrose and appears to be selective for Ca2+ and H+. We show (i) that like the PTP, the mCrC is affected by the sense of rotation of F-ATPase, by Bz-423, and by Mg2+/ADP; (ii) that expression of human cyclophilin D in mitochondria of Drosophila S2R+ cells sensitizes the mCrC to Ca2+ but does not increase its apparent size; and (iii) that purified dimers of D. melanogaster F-ATPase reconstituted into lipid bilayers form 53-pS channels activated by Ca2+ and thiol oxidants and inhibited byMg(2+)/gamma-imino ATP. These findings indicate that the mCrC is the PTP of D. melanogaster and that the signature conductance of F-ATPase channels depends on unique structural features that may underscore specific roles in different species
Vacuum annealing phenomena in ultrathin TiDy/Pd bi-layer films evaporated on Si(100) as studied by TEM and XPS
Using a combination of TEM and XPS, we made an analysis of the complex high-temperature annealing effect on ultrathin titanium deuteride (TiDy) films evaporated on a Si(100) substrate and covered by an ultrathin palladium layer. Both the preparation and annealing of the TiDy/Pd bi-layer films were performed in situ under UHV conditions. It was found that the surface and bulk morphology of the bi-layer film as well as that of the Si substrate material undergo a microstructural and chemical conversion after annealing and annealing-induced deuterium evolution from the TiDy phase. Energy-filtered TEM (EFTEM) mapping of cross-section images and argon ion sputter depth profiling XPS analysis revealed both a broad intermixing between the Ti and Pd layers and an extensive inter-diffusion of Si from the substrate into the film bulk area. Segregation of Ti at the Pd top layer surface was found to occur by means of angle-resolved XPS (ARXPS) and the EFTEM analyses. Selected area diffraction (SAD) and XPS provided evidence for the formation of a new PdTi2 bimetallic phase within the top region of the annealed film. Moreover, these techniques allowed to detect the initial stages of TiSi phase formation within the film–substrate interlayer
- …
