8 research outputs found

    An extraterrestrial trigger for the Early Cretaceous massive volcanism? Evidence from the paleo-Tethys Ocean

    Get PDF
    The Early Cretaceous Greater Ontong Java Event in the Pacific Ocean may have covered ca. 1% of the Earth's surface with volcanism. It has puzzled scientists trying to explain its origin by several mechanisms possible on Earth, leading others to propose an extraterrestrial trigger to explain this event. A large oceanic extraterrestrial impact causing such voluminous volcanism may have traces of its distal ejecta in sedimentary rocks around the basin, including the paleo-Tethys Ocean which was then contiguous with the Pacific Ocean. The contemporaneous marine sequence at central Italy, containing the sedimentary expression of a global oceanic anoxic event (OAE1a), may have recorded such ocurrence as indicated by two stratigraphic intervals with 187Os/188Os indicative of meteoritic influence. Here we show, for the first time, that platinum group element abundances and inter-element ratios in this paleo-Tethyan marine sequence provide no evidence for an extraterrestrial trigger for the Early Cretaceous massive volcanism

    Chemical heterogeneity of the Emeishan mantle plume: Evidence from highly siderophile element abundances in picrites

    Get PDF
    Highly magnesian lavas or picrites have the potential to preserve important information about the origin and thermochemical state of the mantle source(s) of large igneous provinces. We have conducted a comprehensive study of highly siderophile element (HSE) concentrations in picrites from the ca. 260 Ma Emeishan large igneous province. We show that HSE abundances in the Emeishan picrites are greater than those in mid-ocean ridge basalts (MORBs) and parental melts of Hawaiian picrites, but are similar to those in komatiites. The picrites have two types of C1-normalized HSE patterns: (a) type 1, as represented by the Muli picrites is similar to that of the primitive upper mantle; (b) type 2, as represented by the Dali picrites resembles East Greenland and Iceland picrites. Pt/Ir and Pd/Ir ratios in the type 2 picrites are higher than those in type 1 picrites. The primary melt compositions of the studied samples have been estimated by back-addition of equilibrium olivine. The calculated HSE abundances of the parental liquids of the Dali and Muli picrites are higher than those of the parental melts to Hawaiian picrites. Along with previously published isotopic data, our study provides further evidence for chemical heterogeneity of the Emeishan mantle plume

    Platinum-group, major, and trace element abundances in ODP Leg 183 basalts

    No full text
    Seventeen basalts from Ocean Drilling Program (ODP) Leg 183 to the Kerguelen Plateau (KP) were analyzed for the platinum-group elements (PGEs: Ir, Ru, Rh, Pt, and Pd), and 15 were analyzed for trace elements. Relative concentrations of the PGEs ranged from ~0.1 (Ir, Ru) to ~5 (Pt) times primitive mantle. These relatively high PGE abundances and fractionated patterns are not accounted for by the presence of sulfide minerals; there are only trace sulfides present in thin-section. Sulfur saturation models applied to the KP basalts suggest that the parental magmas may have never reached sulfide saturation, despite large degrees of partial melting (~30%) and fractional crystallization (~45%). First order approximations of the fractionation required to produce the KP basalts from an ~30% partial melt of a spinel peridotite were determined using the PELE program. The model was adapted to better fit the physical and chemical observations from the KP basalts, and requires an initial crystal fractionation stage of at least 30% olivine plus Cr-spinel (49:1), followed by magma replenishment and fractional crystallization (RFC) that included clinopyroxene, plagioclase, and titanomagnetite (15:9:1). The low Pd values ([Pd/Pt]_pm < 1.7) for these samples are not predicted by currently available Kd values. These Pd values are lowest in samples with relatively higher degrees of alteration as indicated by petrographic observations. Positive anomalies are a function of the behavior of the PGEs; they can be reproduced by Cr-spinel, and titanomagnetite crystallization, followed by titanomagnetite resorption during the final stages of crystallization. Our modeling shows that it is difficult to reproduce the PGE abundances by either depleted upper or even primitive mantle sources. Crustal contamination, while indicated at certain sites by the isotopic compositions of the basalts, appears to have had a minimal affect on the PGEs. The PGE abundances measured in the Kerguelen Plateau basalts are best modeled by melting a primitive mantle source to which was added up to 1% of outer core material, followed by fractional crystallization of the melt produced. This reproduces both the abundances and patterns of the PGEs in the Kerguelen Plateau basalts. An alternative model for outer core PGE abundances requires only 0.3% of outer core material to be mixed into the primitive mantle source. While our results are clearly model dependent, they indicate that an outer core component may be present in the Kerguelen plume source
    corecore