181 research outputs found

    LncRNA-p21 alters the antiandrogen enzalutamide-induced prostate cancer neuroendocrine differentiation via modulating the EZH2/STAT3 signaling

    Get PDF
    While the antiandrogen enzalutamide (Enz) extends the castration resistant prostate cancer (CRPC) patients' survival an extra 4.8 months, it might also result in some adverse effects via inducing the neuroendocrine differentiation (NED). Here we found that lncRNA-p21 is highly expressed in the NEPC patients derived xenograft tissues (NEPC-PDX). Results from cell lines and human clinical sample surveys also revealed that lncRNA-p21 expression is up-regulated in NEPC and Enz treatment could increase the lncRNA-p21 to induce the NED. Mechanism dissection revealed that Enz could promote the lncRNA-p21 transcription via altering the androgen receptor (AR) binding to different androgen-response-elements, which switch the EZH2 function from histone-methyltransferase to non-histone methyltransferase, consequently methylating the STAT3 to promote the NED. Preclinical studies using the PDX mouse model proved that EZH2 inhibitor could block the Enz-induced NED. Together, these results suggest targeting the Enz/AR/lncRNA-p21/EZH2/STAT3 signaling may help urologists to develop a treatment for better suppression of the human CRPC progression

    Androgen receptor acetylation governs trans activation and MEKK1-induced apoptosis without affecting in vitro sumoylation and trans-repression function

    Get PDF
    This work was supported by grants from the NIH (R01CA86072 to R.G.P. and R01CA72038-01 to S.A.W.F.) and The Susan Komen Breast Cancer Foundation (to R.G.P.). R.T.H. and E.J. were supported by the Medical Research Council. Y.-G.Y. is supported by grant CA26504 to E. R. Stanley. Work conducted at the Albert Einstein College of Medicine was supported by Cancer Center Core National Institutes of Health grant 5-P30-CA13330-26.The androgen receptor (AR) is a nuclear hormone receptor superfamily member that conveys both traits repression and ligand-dependent trans-activation function. Activation of the AR by dihydrotestosterone (DHT) regulates diverse physiological functions including secondary sexual differentiation in the male and the induction of apoptosis by the JNK kinase, MEKK1. The AR is posttranslationally modified on lysine residues by acetylation and sumoylation. The histone acetylases p300 and P/CAF directly acetylate the AR in vitro at a conserved KLKK motif. To determine the functional properties governed by AR acetylation, point mutations of the KLKK motif that abrogated acetylation were engineered and examined in vitro and in vivo. The AR acetylation site point mutants showed wild-type trans repression of NF-kappaS, AP-1, and Sp1 activity; wild-type sumoylation in vitro; wild-type ligand binding; and ligand-induced conformational changes. However, acetylation-deficient AR mutants were selectively defective in DHT-induced trans activation of androgen-responsive reporter genes and coactivation by SRC1, Ubc9, TIP60, and p300. The AR acetylation site mutant showed 10-fold increased binding of the N-CoR corepressor compared with the AR wild type in the presence of ligand. Furthermore, histone deacetylase 1 (HDAC1) bound the AR both in vivo and in cultured cells and HDAC1 binding to the AR was disengaged in a DHT-dependent manner. MEKK1 induced AR-dependent apoptosis in prostate cancer cells. The AR acetylation mutant was defective in MEKK1-induced apoptosis, suggesting that the conserved AR acetylation site contributes to a pathway governing prostate cancer cellular survival. As AR lysine residue mutations that abrogate acetylation correlate with enhanced binding of the N-CoR repressor in cultured cells, the conserved AR motif may directly or indirectly regulate ligand-dependent corepressor disengagement and, thereby, ligand-dependent trans activation.Publisher PDFPeer reviewe

    Abnormal Mammary Gland Development and Growth Retardation in Female Mice and MCF7 Breast Cancer Cells Lacking Androgen Receptor

    Get PDF
    Phenotype analysis of female mice lacking androgen receptor (AR) deficient (AR−/−) indicates that the development of mammary glands is retarded with reduced ductal branching in the prepubertal stages, and fewer Cap cells in the terminal end buds, as well as decreased lobuloalveolar development in adult females, and fewer milk-producing alveoli in the lactating glands. The defective development of AR−/− mammary glands involves the defects of insulin-like growth factor I–insulin-like growth factor I receptor and mitogen-activated protein kinase (MAPK) signals as well as estrogen receptor (ER) activity. Similar growth retardation and defects in growth factor–mediated Ras/Raf/MAPK cascade and ER signaling are also found in AR−/− MCF7 breast cancer cells. The restoration assays show that AR NH2-terminal/DNA-binding domain, but not the ligand-binding domain, is essential for normal MAPK function in MCF7 cells, and an AR mutant (R608K), found in male breast cancer, is associated with the excessive activation of MAPK. Together, our data provide the first in vivo evidence showing that AR-mediated MAPK and ER activation may play important roles for mammary gland development and MCF7 breast cancer cell proliferation

    Increased CK5/CK8-Positive Intermediate Cells with Stromal Smooth Muscle Cell Atrophy in the Mice Lacking Prostate Epithelial Androgen Receptor

    Get PDF
    Results from tissue recombination experiments documented well that stromal androgen receptor (AR) plays essential roles in prostate development, but epithelial AR has little roles in prostate development. Using cell specific knockout AR strategy, we generated pes-ARKO mouse with knock out of AR only in the prostate epithelial cells and demonstrated that epithelial AR might also play important roles in the development of prostate gland. We found mice lacking the prostate epithelial AR have increased apoptosis in epithelial CK8-positive luminal cells and increased proliferation in epithelial CK5-positive basal cells. The consequences of these two contrasting results could then lead to the expansion of CK5/CK8-positive intermediate cells, accompanied by stromal atrophy and impaired ductal morphogenesis. Molecular mechanism dissection found AR target gene, TGF-β1, might play important roles in this epithelial AR-to-stromal morphogenesis modulation. Collectively, these results provided novel information relevant to epithelial AR functions in epithelial-stromal interactions during the development of normal prostate, and suggested AR could also function as suppressor in selective cells within prostate

    Targeting inflammatory cytokines-androgen receptor (AR) signaling with ASC-J9® to better battle prostate cancer progression

    Get PDF
    Inflammatory cytokines and chemokines released by macrophages in the prostate cancer microenvironment may signal via the androgen receptor (AR ) to influence tumor progression. In particular, macrophages appear to promote tumorigenesis by altering the chemokine (C-C motif) ligand 4 (CCL4)/AR signaling axis. This process can be blocked by AS C-J9®, an enhancer of AR degradation. AS C-J9® also inhibits the CCL2-dependent, signal transducer and activator of transcription 3 (STAT3)-mediated pro-metastatic signaling cascade that is generally activated by androgen deprivation therapy. Thus, targeting inflammatory cytokines signaling via the AR , with AS C-J9®, represents a promising therapeutic approach against prostate cancer progression. © 2013 Landes Bioscience
    corecore