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LncRNA-p21 alters the antiandrogen enzalutamide-
induced prostate cancer neuroendocrine
differentiation via modulating the EZH2/

STAT3 signaling
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Liang Cheng®, Sankar N. Maity®, Runze Jiang’” & Chawnshang Chang'®

While the antiandrogen enzalutamide (Enz) extends the castration resistant prostate cancer
(CRPC) patients’ survival an extra 4.8 months, it might also result in some adverse effects via
inducing the neuroendocrine differentiation (NED). Here we found that IncRNA-p21 is highly
expressed in the NEPC patients derived xenograft tissues (NEPC-PDX). Results from cell lines
and human clinical sample surveys also revealed that IncRNA-p21 expression is up-regulated
in NEPC and Enz treatment could increase the IncRNA-p21 to induce the NED. Mechanism
dissection revealed that Enz could promote the IncRNA-p21 transcription via altering the
androgen receptor (AR) binding to different androgen-response-elements, which switch the
EZH2 function from histone-methyltransferase to non-histone methyltransferase, conse-
quently methylating the STAT3 to promote the NED. Preclinical studies using the PDX mouse
model proved that EZH2 inhibitor could block the Enz-induced NED. Together, these results
suggest targeting the Enz/AR/IncRNA-p21/EZH2/STAT3 signaling may help urologists to
develop a treatment for better suppression of the human CRPC progression.
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rostate cancer (PCa) is the most prevalent male cancer in

the U.S!, and the current standard androgen deprivation

therapy (ADT) with the FDA-approved antiandrogen
Enzalutamide (Enz, also known as MDV3100) may effectively
suppress the castration resistant PCa (CRPC) and extend CRPC
patients survival an extra 4.8 months. However, ADT with Enz
treatment (ADT-Enz) may also induce some unwanted adverse
effects including development of Enz-resistance and increasing
the PCa cell invasion as demonstrated in several preclinical
models>3, as well as promoting the neuroendocrine (NE) differ-
entiation (NED)%>.

The increase of neuroendocrine PCa cells (NEPC) represents a
severe condition during ADT because these NEPC cells express
little androgen receptor (AR) and will not respond to current
ADTs®. Importantly, NEPC can also function via secreting
cytokines or growth factors to stimulate the PCa growth’, and
increase the surrounding PCa cells resistance to chemotherapy®.
Moreover, knocking down AR in the PCa cells could also increase
the expression of NE markers». The detailed mechanisms,
however, remain unclear.

The AR is the master regulator to modulate PCa progression.
While most ADTs can either reduce the androgen production or
prevent androgens from binding to AR, ADT may continue to
increase the expression of AR, even at the castration-resistant
stage®!0, and AR may be transactivated via several non-
androgens factors, including growth factors, cytokines and kina-
ses!l. Importantly, AR may also play dual roles to either function
as a proliferator to enhance the PCa cell growth or function as
suppressor of PCa cell invasion as demonstrated in several pre-
clinical in vitro cell lines and in vivo mouse models>12-14,

Recently, accumulating evidence suggested that long non-
coding RNAs (IncRNAs) might play key roles to regulate cancer
progression!®>. The IncRNA-p21 was identified as the p53 co-
repressor!®, and might activate p21 to promote the PRC2 target
genes expression to impact the cellular epigenetic regulation!”.
Other studies also suggested that IncRNA-p21 could function as a
biomarker to monitor the PCa progression!8.

The histone methyltransferase Enhancer of Zeste Homolog 2
(EZH2), can function as the enzymatic core component of Poly-
comb Repressive Complex 2 (PRC2) to catalyze the Histone 3
lysine 27 tri-methylation for inhibition of the downstream genes
transcription at the epigenetic level!®. EZH2 can also function as a
non-histone methyltransferase independent of the PRC2
complex?%2! to methylate non-histone proteins, such as STAT3
and AR, thus promoting tumorigenicity?»23. However, the detailed
mechanisms to switch the EZH2 histone to non-histone methyl-
transferase function are unclear. Interestingly, in CRPC cells, the
oncogenic activity of EZH2 does not rely on the PRC2 complex,
suggesting that this EZH2 PRC2 independent function is also
critical in CRPC cells. Importantly, much higher expression of
EZH2 was also found in the NEPC cells?»%>. And recent studies
suggested that a high expression of EZH2 can alter the epigenetic
programming in NEPC cells and promote the NEPC cells
growth?%27, Such regulation still relies on EZH2 PRC2 dependent
function. The detailed mechanisms to link the ADT-Enz to altering
the EZH2 expression to impact the NED, however, remain unclear.

Here we found that Enz might function via altering the AR/
IncRNA-p21/EZH2/STATS3 axis and targeting this signal with an
EZH2 inhibitor can reduce the Enz treatment-unwanted adverse
effect of promoting the NED.

Results

IncRNA-p21 expression is increased in NEPC cells. Early stu-
dies indicated that Enz might induce some adverse-effects,
including enhancing the NED, which may then promote the

Enz-resistance’. The detailed mechanisms, especially its potential
linkage to the IncRNAs, key players in cancer progression®s,
however, remain unclear.

We first screened 75 IncRNAs whose expressions are correlated
with PCa progression in the PCa adenocarcinoma PDX (PDX-133-
4C) and NEPC PDX (PDX-144-13C) xenograft studies?>30, and
results revealed that many IncRNAs expression were significantly
increased in the NEPC-PDX samples (Fig. 1a and Supplementary
Data 1). We then detected 12 IncRNAs whose expression were
most significantly increased in the NEPC-PDX samples as
compared to the adenocarcinoma-PDX samples, and identified
the highest expression of IncRNA-p21 in NE1.8 cells compared to
LNCaP cells (Fig. 1b). Furthermore, we also found the higher
expression of IncRNA-p21 in DU145 (NE-like cells)?1:32 NCI-H660
(NEPC)?* cells, and PC3 cells (NE-like cells) as compared to that
found in the CWR22RV1 and C4-2 cells (Fig. 1c).

Importantly, using both qPCR and In Situ hybridization, we
found treating with Enz could increase the IncRNA-p21
expression in both C4-2 and CWR22RV1 cells, suggesting that
IncRNA-p21 might play a key role in the Enz-induced NED
(Fig. 1d, e)

We then examined the expression of IncRNA-p21 in human
clinical samples from two published RNA sequencing
database333% and results revealed higher IncRNA-p21 expression
in PCa samples than in normal prostate tissues (Fig. 1f), as well as
higher expression in the PCa patients who received the ADT
(Fig. 1g and Supplementary Fig. 1B). Importantly, we assayed the
human clinical samples and found that IncRNA-p21 expression
was increased significantly in small cell carcinoma (SCC) samples
compared to CRPC samples (Fig. 1h).

Together, results from Fig. la-h suggest that IncRNA-p21
expression is increased in the NEPC cells.

IncRNA-p21 promotes the NED after Enz treatment. To further
link the Enz-increased IncRNA-p2l1 expression to the Enz-
enhanced NED, we overexpressed the IncRNA-p21 in PCa cells,
and results from the Western Blot (WB) and qPCR assays revealed
that adding IncRNA-p21 led to increase the expression of NE
markers in both C4-2 and CWR22RV1 cells (Fig. 2a, b and Sup-
plementary Fig. 1C, respectively), and knocking down IncRNA-p21
led to decrease the NE markers expression (Fig. 2¢, d and Supple-
mentary Fig. 1F-H) and suppress the cell growth in NE1.8, NCI-
H660 and DU145 cells (Fig. 2e, f and Supplementary Fig. 1E and I,
respectively), suggesting that IncRNA-p21 is the key player to
promote the NED and maintain the NE cell characteristics.

Importantly, knocking down the IncRNA-p21 also blocked the
Enz-induced NE-like cellular morphology in C4-2 cells (Fig. 2g),
as well as suppressed the Enz-induced NE marker expressions
(Fig. 2h, i and Supplementary Fig. 1J).

We also knocked down HNRP-K (a co-factor of IncRNA-p21)
and HUR (a suppressor for IncRNA-p21) in C4-2 cells
(Supplementary Fig. 1K)!63> and results revealed that Enz
treatment failed to enhance NED after depleting HNRP-K
(Supplementary Fig. 1K). In contrast, Enz can better promote
the NED after knocking down HUR (Supplementary Fig. 1K),
suggesting that IncRNA-p21 is the key player for the Enz-induced
NED in PCa cells.

To confirm the conclusions from the in vitro cell line studies,
we established the CWR22RV1 xenograft tumors, and the results
showed that the IncRNA-p21 can enhance the tumor sizes and
weights (Fig. 2j and Supplementary Fig. 2A-B). More impor-
tantly, NE markers expressions in the CWR22RV1-IncRNA-p21
tumors were significantly increased compared to the
CWR22RV1-pWPI tumors (Fig. 2j, k). The further analysis of
the levels of IncRNA-p21 and different NE markers (NSE, ChgA
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Fig. 1 The IncRNA-p21 level is increased in NEPC cells. a The gPCR analysis to detect 75 IncRNAs expressed in NEPC-PDX and adenocarcinoma-PDX
samples. b Detecting INcRNAs expressions in LNCaP and NE1.8 cells by gPCR analysis. € The gPCR analysis of INcRNA-p21 expression in CWR22RV1
(22RV1), C4-2, DU145, NCI-H660, and PC3 cells. d The gPCR analysis of IncRNA-p21 expression in C4-2 and 22RV1 cells after Enz treatment. e Detecting
the IncRNA-p21 expression in Enz-treated C4-2 cells by RNA in situ hybridization (Scale bar =2 pm). f The IncRNA-p21 expression in human normal
prostate tissues (n =10) and human PCa tissues (n=34). g The IncRNA-p21 expression in PCa tissues before and after ADT (n=7). h Detection

of INcRNA-p21 level in human CRPC (n=10) and PCa small cell carcinoma (SCC) (n=10) samples. For B and D, data are presented as mean £ SD,

**p <0.005, by t-test
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Fig. 2 The IncRNA-p21 is the key factor to promote the NED after Enz treatment and maintain the NE cell characteristics. a Overexpressing INcRNA-p21 in
C4-2 cells for NE markers analysis by gPCR. b Overexpressing IncRNA-p21 in C4-2 cells for NE markers analysis by WB. ¢ The NE markers in NE1.8 cells
after knocking down IncRNA-p21 were determined by gPCR. d The NE markers in NCI-H660 cells after knocking down IncRNA-p21 were determined by
gPCR. e The IncRNA-p21 was knocked down in NE1.8 cells and cell viability was analyzed by MTT. f The IncRNA-p21 was knocked down in NCI-H660 cells
and cell viability was analyzed by MTT. g Cell morphology of pLKO and sh-IncRNA-p21 C4-2 cells after Enz treatment. (Scale bar = 20 pm) h Knockdown
of IncRNA-p21 decreased the Enz-induced NE marker protein levels. The C4-2 pLKO control and sh-IncRNA-p21 cells were treated with Enz for 6 days, and
then the NE markers analyzed by WB. i Knockdown of IncRNA-p21 decreased the Enz-induced mRNA of NE markers. The C4-2 pLKO control and
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xenograft tumors. k The IHC staining of the NE markers in 22RV1-pWPI and 22RV1-IncRNA-p21 xenograft tumors. | The correlation of expressions of
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and SYP) in human PCa samples also revealed the positive
correlations between the expression of IncRNA-p21 and NSE,
ChgA, and SYP (Fig. 21).

Together, results from Fig. 2a-1, Supplementary Fig. 1B-K, and
Supplementary Fig. 2 suggest that IncRNA-p21 is essential for the
Enz-induced NED.

EZH2 is essential for Enz-induced NED in PCa. To dissect the
molecular mechanism of how Enz induces IncRNA-p21 to pro-
mote NED in PCa, we focused on investigating the EZH2, the key
player of the PRC2 complex, since a recent study suggested that
IncRNA-p21 could regulate PRC2 target genes expression!” and
EZH2 was found to play key roles for NEPC progression®.

We first knocked down EZH2 in C4-2 cells and found that this
significantly reduced the Enz-increased NE marker expressions
(Fig. 3a, b). The microscopic images of the C4-2 cells also
indicated that suppressing the EZH2 resulted in less NE-like
structure (Fig. 3c). Importantly, by analyzing the AR and PSA
expressions, we found that shEZH2 failed to change the AR
activity and the suppression effect of Enz on AR signals
(Supplementary Fig. 3A-B), suggesting that EZH2 regulating
NED does not function through targeting the AR signals.

Similar results were also obtained when we applied EZH2 specific
inhibitors Dznep and GSK126. We found suppressing the EZH2
activity would also block the Enz-induced NED, suggesting that
EZH2 methyltransferase activity is required for the Enz-induced
NED (Fig. 3d and Supplementary Fig. 3C). Using the NEPC cell
line, NE1.8%6, we obtained similar results showing knocking down
EZH2 decreased the NE markers expressions (Fig. 3e). More
importantly, treating the NCI-H660 cells with EZH2 inhibitors can
significantly suppress the cell growth, which suggested that targeting
EZH?2 can reduce the NEPC cell viability (Supplementary Fig. 3D).

We further found that treatment with GSK126 abolished the
IncRNA-p21-enhanced NED (Fig. 3f), suggesting that the
IncRNA-p21-induced NED is dependent on EZH2, and demon-
strating that Enz may function via altering IncRNA-p21 to
modulate the EZH2-induced NED.

Together, results from Fig. 3a—f and Supplementary Fig. 3C-D
suggest that the Enz-induced IncRNA-p21 promotion of NED is
dependent on EZH2.

Enz promotes NED without involving the PRC2 complex. As
the prevalent function of EZH2 is to mediate the PRC2 complex
function3”, we were interested to see if EZH2 could alter the Enz-
induced NED via altering the PRC2 complex. We found that
treating C4-2 cells with Enz significantly decreased the
H3K27me3 level, which is the marker for PRC2 complex activity
(Fig. 3g, h).

Results from Co-immunoprecipitation (Co-IP) assays also
revealed that Enz could dramatically decrease the interaction
among 3 PRC2 complex core subunits (EZH2, SUZ12 and EED)
in C4-2 and LNCaP cells (Fig. 3i and Supplementary Fig. 3E,
respectively), suggesting that Enz can disrupt the formation of the
PRC2 complex. Results from the GSEA analysis indicated that
Enz increased the expression of PRC2-EZH2 target genes (Fig. 3j
and Supplementary Fig. 3F). We also observed that Enz treatment
increased several PRC2 target genes expressions in C4-2 cells
(Fig. 3k).

To identify whether the PRC2 complex is required for Enz-
induced NED, we knocked down other PRC2 complex compo-
nents including EED and SUZ12 and assayed their impact on the
NED. The qPCR results indicated that disruption of the PRC2
complex failed to block the Enz-induced NED in C4-2 cells
(Fig. 31 and Supplementary Fig. 3G), suggesting that Enz-induced
NED is not dependent on PRC2 complex function.

Together, results from Fig. 3g-1 and Supplementary Fig. 3E-G
suggest that Enz can increase NED via EZH2, but independent of
the PRC2 complex.

Enz enhances STAT3 methylation via EZH2 to promote the
NED. To investigate how Enz functions via EZH2 to induce the
NED independent of the PRC2 complex, we examined if Enz-
induced NED is via altering the EZH2 non-histone methyl-
transferase function. We first assayed the lysine methylation
(Methyl-K) of three proteins that have been reported as EZH2
targets, including STAT3, AR and RORa, and found only
methylation of STAT3 can be induced in C4-2 cells after Enz
treatment (Fig. 4a and Supplementary Fig. 4A). This result is
consistent with early study results indicating that STAT3 could
promote the NED38,

We then knocked down EZH2 in C4-2 cells, and found that
suppressing EZH2 reduced the STAT3 methylation induced by
Enz (Fig. 4b). In agreement with the earlier report showing that
the methylation of STAT3 enhanced the STAT3 activity??, we
also found that knocking down EZH2 reduced phosphorylation
of STAT3 (Fig. 4b). Treating with GSK126 also significantly
reversed the Enz-induced STAT3 methylation, and consequently
reduced STAT3 phosphorylation in C4-2 cells (Fig. 4c).

Results from the RNAseq assay also demonstrated that Enz
treatment increased STAT3 downstream genes expressions
(Supplementary Fig. 4B), which were confirmed from GSEA
showing Enz could activate STAT3 signaling (Fig. 4d). As
expected, knocking down EZH2 reversed the Enz-increased
STAT3 downstream genes expression, suggesting that Enz alters
the EZH2 activity to modulate the STAT3 activity in C4-2 cells
(Fig. 4e).

The Co-IP assay revealed that Enz treatment could enhance the
interaction between EZH2 and STATS3, suggesting that Enz might
increase STAT3 methylation via promoting this interaction
(Fig. 4f). In image analysis using confocal microscope, we also
observed that Enz promotes the translocation of STAT3 from the
cytosol into the nucleus to co-localize with EZH2 (Fig. 4g).

Furthermore, we found that Enz enhanced the EZH2
phosphorylation at serine 21 (S21) (Fig. 4h), which is in
agreement with the early report that EZH2 S21 phosphorylation
by AKT can trigger the EZH2 to methylate STAT3?2.

Finally, adding either the specific inhibitor S31-201 or STAT3-
shRNA to target the STAT3, we found that suppressing the
STAT3 could significantly reduce the Enz-induced NED in C4-2
(Fig. 4i and Supplementary Fig. 4C, respectively). We also found
that p-EZH2 and p-STAT3 levels were elevated in NE1.8 cells
compared to LNCaP cells, indicating that the EZH2-STAT3
signal is activated in these cells (Fig. 4j).

Together, results from multiple approaches shown in Fig. 4a-j
and Supplementary 3A-C suggest that Enz can function via
promoting the EZH2 methyltransferase activity to methylate
STATS3 to induce the NED in the PCa cells.

LncRNA-p21 promotes EZH2 to enhance STAT3 methylation.
To investigate how Enz induces IncRNA-p21 to regulate the
EZH2 function, we checked whether IncRNA-p21 can regulate
the PRC2 complex activity. We found adding IncRNA-p21
increased the expression of several EZH2-PRC2 target genes and
suppressed the interaction between EZH2 and other PRC2
complex components and reduced the H3K27me3 (Fig. 5a, b). In
contrast, knocking down IncRNA-p2l1 increased EZH2 and
SUZ12 interaction (Supplementary Fig. 5A).

Importantly, we found adding IncRNA-p21 in C4-2 cells also
significantly enhanced the STAT3 methylation and phosphor-
ylation (Fig. 5¢ and Supplementary Fig. 5B), as well as the
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STAT3 downstream genes expression (Fig. 5d). As expected,
knocking down IncRNA-p21 blocked the Enz-induced STAT3
methylation (Fig. 5e and Supplementary Fig. 5C), suggesting
that Enz may function via increasing the IncRNA-p21 to alter
the EZH2 methyltransferase activity to enhance the STAT3
methylation.

The results from Co-IP assays also revealed that IncRNA-p21
could promote the interaction of EZH2 with STAT3 (Fig. 5f), and
knocking down the IncRNA-p21 in the C4-2 cells also rendered
the Enz to have less effect to promote the STAT3 and EZH2 co-
localization (Fig. 5g), suggesting that IncRNA-p21 is necessary for
the Enz-induced STAT3 and EZH2 interaction.

Together, results from Fig. 5a—g suggest that Enz promotes the
IncRNA-p21 expression to increase the EZH2 non-histone
methyltransferase activity to methylate STAT3, which then
results in NED induction in PCa.

LncRNA-p21 inhibits EZH2 and Hotair interaction. To further
study how IncRNA-p21 disrupts the PRC2 complex, we exam-
ined whether it can directly interact with EZH2. Results from
RNA pull-down assays indicated that IncRNA-p21 could bind to
EZH?2, and Enz treatment significantly increased this binding
(Fig. 6a-c).

Results from the RIP assay also demonstrated the interaction
between IncRNA-p21 and EZH2 and Enz treatment could
enhance IncRNA-p21 binding to EZH2 in C4-2 cells (Fig. 6d).
Interestingly, we also found that Enz significantly suppressed the
interaction of EZH2 and IncRNA-Hotair, the key factor to
stabilize the PRC2 complex3® (Fig. 6d). Similar results were also
obtained in RNA pull-down assays, demonstrating that Enz
reduced IncRNA-Hotair and EZH2 interaction (Fig. 6e), and
adding IncRNA-p21 could then suppress EZH2 and IncRNA-
Hotair interaction (Fig. 6f).

Together, results from Fig. 6a—f suggest that Enz increases the
IncRNA-p21 level to disrupt the PRC2 complex and this may be
achieved through inhibiting the Hotair and EZH2 interaction.
The consequences of such inhibition result in releasing the EZH2
from the PRC2 complex and increasing the EZH2 non-histone
methyltransferase activity to methylate the STAT3.

LncRNA-p21 enhances EZH2 p-S21 to increase STAT3 methy-
lation. To dissect the mechanism how the Enz induced IncRNA-
p21 promotes the released EZH2 to methylate STAT3, we examined
whether simply disrupting the PRC2 complex can result in STAT3
methylation induction. Our results indicated that knocking down
EED, the key component of the PRC2 complex?], failed to alter the
STAT3 methylation status (Fig. 6g), yet Enz could still increase the
STAT3 methylation in the EED-shRNA cells, suggesting that only
disruption of the PRC2 complex is not adequate for the Enz-
enhanced STAT3 methylation. To further investigate how Enz-
IncRNA-p21 promotes STAT3 methylation, we raised two
hypotheses, (1) IncRNA-p21 functions as a scaffold to interact with
EZH2 and STAT3, or (2) IncRNA-p21 could promote the EZH?2 p-
S21 level to enhance the STAT3 methylation. Results from the
interaction of IncRNA-p21, EZH2, and STAT3 molecules revealed
that Enz treatment increased the IncRNA-p21 interaction with
EZH2, but not STAT3 and EED (Supplementary Fig. 6), suggesting
that IncRNA-p21 may not be able to function as the scaffold for
EZH2 and STATS3.

We then examined the effect of Enz-enhanced EZH2 p-S21
level and found IncRNA-p21 increased EZH2 p-S21 (Fig. 6h), and
knocking down IncRNA-p21 significantly blocked the Enz-
induced EZH2 p-S21 (Fig. 6i).

Since an early report indicated that AKT could phosphorylate
EZH2 S21 and promote the STAT3 methylation?2, we also

studied AKT roles. It was found that the IncRNA-p21
dramatically increased EZH2 and AKT interaction, and sh-
IncRNA-p21 blocked the Enz-increased interaction between
EZH2 and AKT (Fig. 6j, k). Importantly, results from the
interaction between IncRNA-p21, EZH2, and AKT indicated that
these molecules can interact with each other, and the Enz
treatment enhances such an interaction (Fig. 61). These results
suggest that the IncRNA-p21 could function as a scaffold to
facilitate the EZH2 and AKT interaction.

Together, results from Fig. 6g-1 suggest that Enz-IncRNA-p21
can promote AKT-EZH2 interaction to increase the EZH2 p-S21
level. The consequence of these two regulation steps (disruption
of the PRC2 complex to release the EZH2 and enhancement of
the AKT and EZH2 interaction), in turn, increased the STAT3
methylation.

Enz differentially controls AR binding to IncRNA-p21 pro-
moter. All above results suggest that ADT-Enz can promote NED
via altering the IncRNA-p21/EZH2/STAT3 axis. To further dis-
sect the mechanism(s) of how Enz can increase IncRNA-p21
expression, we investigated the role of AR, since ADT-Enz was
developed mainly to target the AR signals. As shown in Supple-
mentary Fig. 7A, Enz can not induce the IncRNA-p21 expression
in C4-2 shAR cells, suggesting that AR is the critical factor for the
Enz-induced IncRNA-p21 expression.

The results from the qPCR assay revealed that knockdown of
AR significantly increased the IncRNA-p21 expression in both
C4-2 and CWR22RV1 cells (Fig. 7a). In contrast, overexpression
of AR in PC3 and DU145 cells can dramatically reduce IncRNA-
p21 expression (Supplementary Fig. 7B), and treating with the
androgen, DHT, can suppress IncRNA-p21 expression (Supple-
mentary Fig. 7C), suggesting that IncRNA-p21 expression is
directly regulated by AR. The clinical survey also showed that the
AR and IncRNA-p21 expressions are negatively correlated with
each other (Fig. 7b). As expected, knocking down AR also
significantly increased STAT3 methylation and decreased the
interaction between EZH2 and SUZ12, which is consistent with
our previous data (Supplementary Fig. 7D-E).

To further dissect the mechanism of how Enz can regulate the
IncRNA-p21 expression in PCa cells, we searched for the
androgen-response-elements (AREs) on the IncRNA-p21 pro-
moter region, and found 6 putative AREs on the 3 Kb promoter
regions (Fig. 7c). The results from the ChIP assays indicated AR
could only bind to the ARE5 without Enz treatment (Fig. 7d).
However, it was found that treating PCa cells with Enz decreased
the AR binding to ARE5 yet surprisingly increased the AR
binding to the ARE1 and ARE2 (Fig. 7d).

In addition to the classic AREs, recent reports suggested that
Enz could also drive AR to bind to the different response
elements, (named as AR antagonist response element, AGRE),
with sequence 5-NCHKGNnndDCHDGN-3)40. Interestingly,
we found such an AGRE (5'-TCTTGGTTTGCCTGG-3’) located
27 bp upstream of ARE2, and results from the ChIP sequencing
online database indicated that Enz (and Casodex, another
antiandrogen) could increase the AR binding on the AGRE
region (Supplementary Fig. 7F).

To identify which AREs or AGRE can mediate the Enz-
enhanced IncRNA-p21 transcription, we examined the
H3K4me3 status around all of the putative AREs and the AGRE,
and results revealed that the H3K4me3 status on both AGRE and
ARE5 areas was increased significantly after Enz treatment
(Fig. 7e), suggesting that the genes transcription on these two
areas are active*!.

Importantly, we also detected the FOXA1 binding on these 2
areas since FOXAL1 is the key factor to facilitate the AR binding
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hybridization and immunofluorescent staining to detect the co-localization of INcRNA-p21 and EZH2 in C4-2 cells w/0 Enz treatment (Scale bar =2 pm).
d In C4-2 cells, the EZH2 was pulled down by EZH2 antibody and the levels of IncRNA-p21 and Hotair were detected by gPCR. e, f RNA-IP assay to detect
the interaction between Hotair and EZH2 after treating w/o Enz (e) and w/o overexpression of INcRNA-p21. f, g STAT3 methylation levels were detected
by WB in C4-2 pLKO and sh-EED cells after 4 days w/o Enz treatment. h EZH2 p-S21 levels were detected in C4-2 PWPI and PWPI-IncRNA-p21 cells.
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immunoprecipitated. The AKT and EZH2 interaction was analyzed by WB. | C4-2 cells were treated w/o Enz, and then the IncRNA-p21 was pulled down.
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to DNA“2. The results from the anti-FOXA1 ChIP assay to the ARE2 region (Fig. 7f). These results suggest that Enz may
indicated that only the ARE2 and ARES5 regions showed drive AR to bind to the AGRE site.

significant FOXA1 binding (Fig. 7f). We further found that Next, we constructed the 3 kb IncRNA-p21 promoter region to
treating C4-2 cells with Enz significantly suppressed the the PGL3 luciferase reporter plasmid to test whether ADT-Enz
binding of FOXAl on the ARE5 region. However, Enz can increase the IncRNA-p21 transcription. The results from the
treatment only resulted in some decreases of FOXAI binding luciferase assay revealed that Enz (and Casodex) treatment could
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Fig. 7 Enz differentially regulates AR binding on the IncRNA-p21 promoter region and promotes INcRNA-p21 expression. a The gPCR analysis of IncRNA-p21
expression in C4-2 and CWR22RV1 (22RV1) cells w/wo AR knockdown. b The correlation of AR and IncRNA-p21 expressions in the human PCa samples
(n=20). ¢ The schematic depiction of putative androgen response elements (AREs) on IncRNA-p21 3 kb promoter region. d ChIP assays to identify the AR
binding in the putative AREs w/wo Enz treatment. The C4-2 cells were treated w/o Enz for 3 days, and then the AR binding to the putative AREs on the
IncRNA-p21 promoter was analyzed by qPCR. e, f ChIP assays to identify (e) H3K4me3 enrichment and (f) FOXAT1 binding to the putative ARE regions on
the IncRNA-p21 promoter. g Luciferase assay to identify the transactivation of IncRNA-p21 3 kb promoter region after different anti-androgen treatments.
h Luciferase assay to identify the transactivation of IncRNA-p21 3 kb promoter region in C4-2 cells with pLKO or shAR (left) and in PC3 cells with pWPI or
OE-AR (right). (*p<0.05, **p < 0.005). i The Enz treatment vs DMSO control effects on mutated AGRE (AGRE-mut) and mutated ARE5 (ARE5-mut) vs
wild type (WT) IncRNA-p21 promoter transactivation were analyzed by luciferase assay in C4-2 cells. j The gPCR to detect the levelS of IncRNA-p21 and
NE markers in C4-2 pLKO and shSP1 cells w/o Enz treatment. k C4-2 pLKO and shSP1 cells were treated w/o Enz, and then the IncRNA-p21 promoter
transactivation activity was analyzed by luciferase assay. I ChIP assay to identify the SP1 binding on the ARE5 region before and after Enz treatment. m The
SP1RE cluster on IncRNA-p21 promoter region was deleted and constructed into pGL3 luciferase reporter plasmid. Enz effects on WT-IncRNA-p21 promoter
or SP1RE deleted-IncRNA-p21 promoter transactivation were analyzed by luciferase assay. For i, k, the data are presented as mean = SD, *p < 0.05, **p <

0.005, N.S. not significant by t test for two groups or ANOVA for more than two groups

increase IncRNA-p21 promoter activity, with Enz showing a more
significant effect (Fig. 7g). As expected, treating with DHT led to
significantly decreased IncRNA-p21 promoter activity and further
treating with Enz then partially reversed such DHT-mediated
inhibition (Supplementary Fig. 7G).

Similar results were also obtained when we replaced Enz with
AR-cDNA/AR-shRNA. Adding the AR-shRNA increased the
IncRNA-p21 promoter activity and adding the AR-cDNA
decreased the promoter activity (Fig. 7h). Importantly, in AR-
shRNA cells, Enz and Casodex treatment lost their ability to
increase the IncRNA-p21 promoter activity (Supplementary
Fig. 7H). These results suggested that AR plays the suppressor
role on the IncRNA-p21 transcription without Enz treatment.

We also constructed different mutants of IncRNA-p21 AREs or
AGRE into the PGL3 plasmid, and results revealed that Enz can
only slightly increase the IncRNA-p21 promoter activity with
mutated AGRE. Similar to AGRE, Enz had less ability to increase
the IncRNA-p21 promoter activity with mutated ARE5 (Fig. 7i),
suggesting that Enz blocked the AR binding to ARE5 and
increased the IncRNA-p21 transcription, and Enz has a unique
capacity to promote the AR binding to AGRE and further
promote the IncRNA-p21 expression.

Together, results from Fig. 7a-i suggest that AR may play a
suppressor role to inhibit IncRNA-p21 expression when binding
to the ARES5, while play a promoter role to activate IncRNA-p21
expression when binding to the AGRE.

Further mechanism dissection with sequence analysis found
that there is a cluster of SP1 binding sites close to ARE5
(Supplementary Fig. 7I). SP1 is a transcription factor that can
drive various genes expression®3. Since SP1 binding sites are close
to ARES5, we were interested to see if AR binding to ARE5 may
suppress the SP1 binding to its binding sites, and treating with
Enz may release AR binding to promote the SP1 binding. As
expected, knocking down SP1 significantly attenuated IncRNA-
p21 and NE markers induction after Enz treatment (Fig. 7j). The
luciferase assay also indicated that in sh-SP1 cells, Enz treatment
failed to increase IncRNA-p21 promoter activity (Fig. 7k). The
results from the ChIP assay revealed that both Enz treatment and
charcoal dextran treated (CD) media could enhance SP1 binding
on the ARE5 region (Fig. 71 and Supplementary Fig. 7],
respectively). The mutation of the SP1 binding site resulted in
Enz losing most of its ability to increase the IncRNA-p21
transcription (Fig. 7m).

Together, results from Fig. 7i-m suggest that Enz treatment
can enhance SP1 binding on its binding sites near the ARES5
region to promote the IncRNA-p21 transcription.

EZH2 inhibitor blocks Enz-induced NED in PDX mouse
model. To confirm all above in vitro cell lines data in the in vivo
mouse model, we implanted the PCa patient-derived xenograft

(PDX) samples into 20 SCID mice. After the average tumor
volume reached 200 mm?3, we randomly divided mice into 4
groups for ip injections of the control DMSO, Enz (30 mg/kg)
and/or EZH2 inhibitor-Dznep (1 mg/kg) every other day. The
results revealed that both Enz and Dznep treatment significantly
reduced the PCa growth (Fig. 8a, b and Supplementary Fig. 8A).
Results from IHC staining of the NE markers (SYP and ChgA) in
tumor tissues of Enz-treated mice also indicated that Enz sig-
nificantly increased the NED (Fig. 8b). However, Dznep treatment
reduced Enz-induced SYP and ChgA expressions, suggesting that
blocking EZH2 can suppress the Enz-induced NED (Fig. 8b).

Our in vitro study suggests that Enz can block the PRC2
complex. By detecting the H3K27me3 level in the PDX samples,
we obtained similar results that Enz treatment significantly
decreased the H3K27me3 level in the PDX samples (Fig. 8b). We
also confirmed the up-regulation of p-EZH2 and p-STAT3 after
Enz treatment in PDX samples (Fig. 8b), and reduction of p-
STAT3 level after Dznep treatment (Fig. 8b), suggesting that
EZH2 is essential for Enz to increase the STAT3 activity.

To validate that Enz can promote the EZH2 interaction with
STAT3 and methylate the STAT3 molecule, we performed the
immunofluorescent staining for the EZH2 and STAT3 in Enz-
treated PDX samples (vehicle-treated samples were used as
control). The results suggested that after Enz treatment, STAT3
can co-localize with EZH2 in nucleus (Supplementary Fig. 8B).
Importantly, results from assaying the PDX samples also revealed
that Enz could increase the STAT3 methylation, and treating with
Dznep could block such induction (Fig. 8c), which is consistent
with our in vitro studies showing Enz can function via altering the
EZH2 to promote STAT3 methylation.

Finally, results from our qPCR also showed Enz treatment can
promote the IncRNA-p21 expression in PDX samples (Fig. 8d) to
trigger the EZH2-STAT3 axis.

Together, results from our in vivo PDX mouse studies validate
our in vitro cell lines results showing that Enz can promote NED
via activating the IncRNA-p21/EZH2/STAT3 axis, so we suggest
that targeting this axis with an EZH2 inhibitor may suppress the
Enz-induced NED in the PCa.

EZH2/STATS3 signal is activated in the human NEPC samples.
Finally, to confirm the existence of the IncRNA-p21/EZH2/
STAT3 axis in the human clinical samples, we investigated the
correlation of IncRNA-p21 and p-EZH2. We found that IncRNA-
p21 expression is also correlated with the p-EZH2 level in PCa
samples (Fig. 8e). Importantly, we detected significantly higher
numbers of positively stained cells with p-EZH2 and p-STAT3
antibodies (Fig. 81, g), suggesting a positive linkage from IncRNA-
p21 to EZH2 to STAT3 signaling in human SCC cells that is
consistent with our in vitro and in vivo studies.
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Fig. 8 LncRNA-p21/EZH2/STAT3 signal is activated in PDX mice model after Enz treatment and human NEPC samples. a The PCa PDX samples were
subcutaneously implanted into SCID mice and 5 mice/group received different i.p. treatments (1. DMSO; 2. Enz; 3. Dznep; 4. Dznep + Enz) every other day,
and tumor sizes were measured after different treatments. After 10 treatments, the mice were kept for another 2 days and then were sacrificed. The PDX
tumors were collected, and the relative tumor growth rates of different treatments were compared. b The IHC staining to identify the level of NE markers
indicated in different groups (Scale bar =20 pm). ¢ Three tumor samples were randomly picked up from each group, the tissues were lysed and then
STAT3 methylation (methyl-k) was detected by WB. d The IncRNA-p21 levels in control group and Enz-treated group were detected by gPCR. e The
correlation of IncRNA-p21 expression and p-EZH2 level in human PCa samples (n = 80). f Representative images of the immunohistochemistry staining of
SYP, ChgA, p-EZH2 and p-STAT3 in human CRPC and SCC samples. (Scale bar =20 pm). g The gquantification of p-EZH2 (upper) and p-STAT3 (lower)
levels in human CRPC and PCa-SCC samples. For a, e, g, the data are presented as mean = SD, **p < 0.005, by t test for two groups or ANOVA for more
than two groups
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Fig. 9 Schematic depiction of IncRNA-p21/EZH2/STAT3 pathway. Enz treatment induces IncRNA-p21 expression via regulating the AR binding to the
IncRNA-p21 promoter in PCa cells. Highly expressed IncRNA-p21 competes with Hotair to interact with EZH2 and disrupt PRC2 complex (SUZ12 and EED).
At the same time, IncRNA-p21 promotes AKT phosphorylated EZH2 on Serine 21 and enhances the STAT3 methylation by EZH2. The methylated STAT3

was activated and promotes the NED

Discussion

ADT-Enz treatment, currently used as the final therapeutic
strategy to suppress the metastatic CRPC (mCRPC), may extend
the patients’ survival an extra 4.8 months*4, However, the ADT-
Enz treatment may also have some unwanted adverse effects,
including NED induction. Clinical data indicated that 30-40%
mCRPC patients have the NEPC cells, with 10% of them being
small cell carcinomas (SCC) and the other 20-30% are NE-like
cells*>, which may gradually progress to the SCC with much
higher proliferation rates and metastasis abilities?, as well as being
resistant to the ADT-antiandrogens treatment since these NEPC
cells express little AR?4, and the average survival rate after
detection is less than 1 year?®,

Mechanism dissection suggested that the development of
NEPC may be through multiple mechanisms. For example, 40%
of NEPC cells have AURKA and MYCN amplification?4. The
activated AURKA in NEPC may then increase the cell pro-
liferation in the absence of AR, and the MYCN amplification may
cooperate with EZH2 to reduce the AR transactivation activity
and promote the NED2°, Other studies also identified that PEG10
might act as an activator to promote the NED in PCa cells*’, and
BRN2 gene was found to be able to promote the NED>.

Since the classical ADT has little effect to suppress NEPC,
other therapies have been suggested or developed to suppress the
NEPC cell growth. For example, a AURKA inhibitor was devel-
oped to specifically suppress the NEPC growth without influen-
cing the adenocarcinoma cells growth?4. Other studies using the
GSK503, an EZH2 inhibitor, also suppressed the NED!0. Our
preclinical studies using the EZH2 inhibitors (Dznep and
GSK126) also demonstrated that targeting the AR/IncRNA-p21/
EZH2/STAT3 axis with EZH2 inhibitors might be able to sup-
press Enz-induced NED. However, none of these therapeutic
strategies have passed human clinical trials.

Our finding that Enz may release EZH2 from the PRC2
complex with increased EZH2 activity that is responsible for the
methylation of the STAT3 molecule, which will in turn induce
NED increase, is different from previous studies linking the
increased EZH2 activity to altered PRC2 function. We suggest
that the altered EZH2 activity is independent from the PRC2

function. The discovery of dual functions of Enz, to function via
either PRC2 complex dependent or independent manners, is of
clinical significance and may help in the development of inhibi-
tors to suppress the NED (Fig. 9 Diagram).

Early studies indicated that STAT3 might play key roles to
modulate the PCa progression and their stem cell self-renewal48-50,
and constitutively activated STAT3 could also impact the Enz-
resistance®!. However, the potential mechanism(s) to activate
STATS3 in PCa after the ADT remains unclear. Our results showing
Enz may increase the EZH2 activity to methylate STAT3 to
increase the NED induction represent the first finding to link the
activation of STAT3 (by EZH2) to the Enz-induced NED.

Furthermore, early studies suggested that many IncRNAs
might interact with EZH2 and modulate EZH2 PRC2 dependent
function!'”. In contrast, our results revealed that IncRNA-p21
might disrupt the PRC2 complex to activate the PRC2 down-
stream gene expressions. However, IncRNA-p21 not only releases
EZH2 from the PRC2 complex, it might also promote the EZH2
interaction with STATS3 to trigger STAT3 methylation, suggesting
IncRNA-p21 can control the dual phases of EZH2 function.

In this manuscript, we used multiple different PCa cell lines,
C4-2, CWR22RV1, PC3, DU145 and LNCaP, plus two NEPC cell
lines, NCI-H660 and NE1.8. Among the cell lines which we
used, C4-2 and CWR22RV1 are CRPC cells, LNCaP is an
androgen dependent cell line and NE1.8 is a NEPC cell line. The
C4-2 and NEL.8 cells are derived from LNCaP cells, but the
CWR22RV1 cells are derived from an androgen dependent
CWR22 xenograft>2. Although the C4-2 and CWR22RV1 cells are
CRPC cells, much evidence clearly showed that these 2 cell lines are
still dependent on AR and inhibition of AR by the anti-androgen
(Enz) or shRNA still can suppress the cell growth and promote the
NED?2>3-55, As there is clear evidence suggesting that NEPC cells
can be derived from PCa adenocarcinoma cells, we are particularly
interested in this transition in response to ADT or suppression of
AR signaling. Thus, although the eventual NEPC cells are AR
negative, the precursor for NEPC tumors are likely AR positive,
and indeed responsive to suppression of AR signaling including
Enz treatment, particularly for the cell lines that we used, such as
C4-2 and CWR22RV 1535657,
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In summary, our results suggest how Enz treatment can pro-
mote NED, and provide some potential therapies of using EZH2
inhibitors to target the AR/IncRNA-p21/EZH2/STAT3 axis to
reduce the Enz-induced unwanted adverse effects of promoting
the NED.

Methods

Cell culture. NCI-H660 (CRL-5813), DU145 (HTB-81), PC-3 (CRL-1435), LNCaP
(CRL-1740), 293 (CRL-1573) and CWR22RV1 (CRL-2505) cell lines were purchased
from the American Type Culture Collection (ATCC, Manassas, VA). The C4-2 cell
line was a gift from Dr. Leland W.K Chung and NE1.8 cell line was a gift from Dr.
Ming-Fong Lin. All of the PCa cancer cells were cultured in RPMI-1640 media
supplemented with 10% FBS in the humidified 5% CO2 environment at 37 °C. The
293 cells were cultured in DMEM media supplemented with 10% FBS in the
humidified 5% CO2 environment at 37 °C. All cell lines were tested to be negative
for mycoplasma contamination by direct PCR.

Lentivirus packaging and infection. The lentivirus system was applied to intro-
duce the shRNAs or overexpression-cDNAs into the PCa cells. The lentiviruses
were genrated in 293 cells. The 293 cells were co-transfected with the psAX2
plasmid, pMD2G plasmid and the transfer plasmids. After 48 h transfection, the
supernatants which included viruses were collected for immediate use and/or
frozen at —80 °C for later use.

Patient-derived xenograft. The PDX samples were gifts from Dr Sankar N.
Maity?®. The 0.5 cm? xenograft tumor tissues were implanted into the sub-
cutaneous pocket on the severe combined immunodeficient (SCID) mice for
amplification of the PDX samples.

Antibodies and reagents. STAT3 (sc-482), AR (sc-816), GAPDH (sc-47724),
tubulin (sc-23948), ChgA (sc-1488), SYP (sc-17750) and ki67 (sc-23900) antibodies
were from Santa Cruz Biotechnology, Inc (Santa Cruz, CA). H3K27me3 (#9733),
H3K4me3 (#9751), EZH2 (#5246) and p-STAT3 (#9145) antibodies were from Cell
Signaling Technology, Inc (Danvers, MA). The AKT (A01486), FOXA1 (EB05999),
NSE (AP2780a), H3 (620-360), Methyl-K (SPC-158F), EED (A5371) and SUZ12
(AP20347b) antibodies were from OWL, Inc (San Diego, CA) and p-EZH2 anti-
body (IHC-00388) from Bethyl Laboratorys, Inc. (Montgomery, TX). RORa
(GTX100029) antibody was from GeneTex (Irvine, CA).

Western blot analysis. Cells were lysed in lysis buffer and proteins (10-30 pg)
were separated on 8-10% SDS/PAGE gel and then transferred onto PVDF mem-
branes (Millipore, Billerica, MA). After blocking membranes, they were incubated
with primary antibodies, HRP-conjugated secondary antibodies, and visualized
using the ECL system (Thermo Fisher Scientific, Rochester, NY). The primary
antibodies of STAT3, EZH2, EED, SUZ12, SYP, H3K27me3, H3, p-STAT3, AKT,
Methyl-K and NSE were used at dilutions of 1:1000. The primary antibodies of AR,
tubulin and GAPDH were used at dilutions of 1:2000. The primary antibody ChgA
was used at a dilution of 1:500. Uncropped blots of Figs. 2b, h, 3a, e, g, i, 4b, h, j, 5b,
6b, ¢, f, h, k and 8¢ are provided in Supplementary Fig. 9.

STAT3 methylation assay. The cells were lysed in lysis buffer and then incubated
with STAT3 antibody (2 pg) overnight and incubated with 10 ul Agarose A/G
beads for 1h at 4 °C. The methylation level of STAT3 was analyzed by WB using
the lysine methylation antibody.

RNA extraction and quantitative real-time PCR (qPCR) analysis. Total RNAs
were isolated by Trizol (Invitrogen, Grand Island, NY). 1 ug of total RNA was
subjected to reverse transcription using Superscript III transcriptase (Invitrogen).
Quantitative real-time PCR (qRT-PCR) was conducted using a Bio-Rad

CFX96 system with SYBR green to detect the mRNA expression level of a gene of
interest. Expression levels were normalized to the expression of Tubulin or
GAPDH. The primers used for the genes of interest are listed in Supplementary
Data 2.

Cell growth assay. The DU145, NE1.8 and NCI-H660 cells were infected with
PLKO or sh-IncRNA-p21 viruses. And then the cells were seeded in 24-well tissue
culture plates. The viabilities of DU145 and NE1.8 cells were determined by MTT
(Sigma) assay. The viabilities of NCI-H660 cells were determined by WST-1 assay
(Cayman Chemical).

Luciferase assay. The wildtype (wt) or mutant (mut) IncRNA-p21 promoters
were constructed into PGL3-basic plasmid (Promega). C4-2 and PC3 cells were
plated in 24-well plates and transfected with PGL3-luc containing wildtype or
mutant IncRNA-p21 promoters using Lipofectamine (Invitrogen) and pRL-TK was
used as internal control. Luciferase activity was measured by Dual-Luciferase Assay
reagent (Promega) based on the manufacturer’s manual.

Chromatin immunoprecipitation (ChIP). Briefly, protein-DNA complexes were
cross-linked by 1% formaldehyde then quenched using 125 mM glycine. Cells were
collected in lysis buffer and subjected to sonication. After centrifugation, the
supernatant was incubated with 4 pg AR, FOXA1 or H3K4me3 antibodies, and
chromatin DNA was purified and subjected to gPCR detection.

RNA immunoprecipitation (RIP). Briefly, C4-2 cells after different treatments
were fixed by 4% paraformaldehyde and cells were lysed in ice-cold lysis buffer
supplemented with RNase inhibitor. After centrifugation, 10 mg of the supernatant
was cleared by protein A/G beads for 1h and incubated with 4 ug EZH2 antibody
overnight at 4 °C. The RNA was extracted using Trizol (Invitrogen) according to
the manufacturer’s protocol and subjected to qRT-PCR analysis.

Immunofluorescence staining. C4-2, C4-2 pLKO and C4-2 shincRNA-p21 cells
were seeded in the chamber slides (Thermo Fisher), and then treated with 10 uM
Enz for 4 days. The cells were fixed by 4% paraformaldehyde. The primary anti-
bodies of STAT3 and EZH2 were used at dilution of 1:200. The primary antibodies
were recognized by Alexa Fluor Secondary Antibodies (Thermo Fisher, 1:1000).
The images were captured by the Olympus FV1000 laser scanning confocal
microscope. The Pearsons coefficient index for co-localization of STAT3 and EZH2
was analyzed by Olympus Fluoview (Olympus).

In vivo mouse model PDX implantation and different compound treatments.
The PCa-133 PDX sample was the gift from Dr. Sankar N. Maity. The PCa-133
fragments were implanted into SCID mice subcutaneously. After average tumor
volumes reached 200 mm3, we randomly divided mice into 4 groups for i.p
injections of the control DMSO, Enz (30 mg/kg) and/or EZH2 inhibitor-Dznep (1
mg/kg) every other day. Before every injection, the tumor volumes were measured.
After 10 injections, the mice were sacrificed and the tumors were collected for RNA
extraction, WB and IHC. All the mice were purchased from NCI. All experiments
were conducted after approval from the University of Rochester Medical Center
and followed the regulations of the University Committee on Animal Resources
(UCAR).

CWR22RV1 cell xenograft implantation into anterior prostate. CWR22RV1-
pWPI or CWR22RV1-0elncRNA-p21 cells (1 x 106) were implanted into the nude
mice arterior prostate. After 5 weeks implantation, the mice were divided into 4
groups for i.p injection of DMSO and Dznep (1 mg/kg) every other day: 1.
CWR22RV1-pWPI 4+ DMSO; 2. CWR22RV1-pWPI + Dznep; 3. CWR22RV1-
oelncRNA-p21 4+ DMSO; 4. CWR22RV1-oelncRNA-p21 + Dznep. After 10
injections, the mice were sacrificed and the tumors were collected for IHC staining.
All the mice were purchased from NCI. All experiments were conducted after
approval from University of Rochester Medical Center and follow the regulations
of University Committee on Animal Resources.

Immunohistochemistry staining. All of the xenografted tumors were fixed in 4%
neutral buffered paraformaldehyde overnight and embedded in paraffin. The pri-
mary antibodies of SYP, ChgA, p-STATS3, p-EZH2 were used at dilution of 1:100,
and the primary antibodies of ki67 and H3K27me3 were used at dilution of 1:200
for staining. The biotinylated secondary antibody (Vector) were diluted to 1:750 for
recognizing primary antibodies. The signals were visualized by VECTASTAIN
ABC peroxidase system and peroxidase substrate DAB kit (Vector).

Statistics. All experiments were performed in triplicate and at least 3 times. The
data values were presented as the mean + SEM. Differences in mean values between
two groups were analyzed by two-tailed Student’s t-test and ANOVA. p <0.05 was
considered statistically significant.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All the data are available in the article and Supplementary Files, or available from the
authors upon request.
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