14 research outputs found

    Recent enhancements to the GRIDGEN structured grid generation system

    Get PDF
    Significant enhancements are being implemented into the GRIDGEN3D, multiple block, structured grid generation software. Automatic, point-to-point, interblock connectivity will be possible through the addition of the domain entity to GRIDBLOCK's block construction process. Also, the unification of GRIDGEN2D and GRIDBLOCK has begun with the addition of edge grid point distribution capability to GRIDBLOCK. The geometric accuracy of surface grids and the ease with which databases may be obtained is being improved by adding support for standard computer-aided design formats (e.g., PATRAN Neutral and IGES files). Finally, volume grid quality was improved through addition of new SOR algorithm features and the new hybrid control function type to GRIDGEN3D

    Automatic structured grid generation using Gridgen (some restrictions apply)

    Get PDF
    The authors have noticed in the recent grid generation literature an emphasis on the automation of structured grid generation. The motivation behind such work is clear; grid generation is easily the most despised task in the grid-analyze-visualize triad of computational analysis (CA). However, because grid generation is closely coupled to both the design and analysis software and because quantitative measures of grid quality are lacking, 'push button' grid generation usually results in a compromise between speed, control, and quality. Overt emphasis on automation obscures the substantive issues of providing users with flexible tools for generating and modifying high quality grids in a design environment. In support of this paper's tongue-in-cheek title, many features of the Gridgen software are described. Gridgen is by no stretch of the imagination an automatic grid generator. Despite this fact, the code does utilize many automation techniques that permit interesting regenerative features

    Summary of the 1st AIAA Geometry and Mesh Generation Workshop (GMGW-1) and Future Plans

    Get PDF
    The 1st AIAA Geometry and Mesh Generation Workshop (GMGW-1) was held in conjunction with the AIAA Aviation Forum and Exposition 2017 and in collaboration with the 3rd AIAA Computational Fluid Dynamics (CFD) High Lift Prediction Workshop (HiLiftPW-3). As the first AIAA workshop on these topics, GMGW-1's broad objectives were to assess the current state-of-the art in geometry preprocessing and mesh generation technology as well as software as applied to aircraft and spacecraft systems. The workshop was intended to identify and develop understanding of areas of needed improvement in terms of performance, accuracy, and applicability. It was also to provide a foundation for documenting best practices for geometry preprocessing and mesh generation. The genesis of GMGW-1 is found in the indictments levied against geometry preprocessing and mesh generation - not undeservedly - by the NASA CFD Vision 2030 Study. In order to create a reference against which future progress in geometry preprocessing and mesh generation can be measured, the organizers of GMGW-1, with the assistance of the organizers of HiLiftPW- 3, focused GMGW-1 on generation of meshes of the NASA High Lift Common Research Model (HL-CRM). Some of the generated meshes were provided for use by the participants in HiLiftPW-3. All meshes and the processes by which they were generated were analyzed by GMGW-1 as a first assessment of state of the art practices. The results of GMGW-1 added quantitative detail to known problem areas including geometry modeling, data interoperability, and amount of human intervention. They do provide a clear path toward a vision of geometry preprocessing and mesh generation in the year 2030. The next milepost along this path will be a second workshop

    Synthesis of NH-Sulfoximines from Sulfides by Chemoselective One-Pot N- and O-Transfers

    No full text
    Direct synthesis of NH-sulfoximines from sulfides has been achieved through O and NH transfer in the same reaction, occurring with complete selectivity. The reaction is mediated by bisacetoxyiodobenzene under simple conditions and employs inexpensive N-sources. Preliminary studies indicate that NH- transfer is likely to be first, followed by oxidation, but the reaction proceeds successfully in either order. A wide range of functional groups and biologically relevant compounds are tolerated. The use of AcO15NH4 affords 15N-labeled compounds

    Genes To Mental Health (G2MH): A Framework to Map the Combined Effects of Rare and Common Variants on Dimensions of Cognition and Psychopathology

    No full text
    Rare genomic disorders (RGDs) confer elevated risk for neurodevelopmental psychiatric disorders. In this era of intense genomics discoveries, the landscape of RGDs is rapidly evolving. However, there has not been comparable progress to date in scalable, harmonized phenotyping methods. As a result, beyond associations with categorical diagnoses, the effects on dimensional traits remain unclear for many RGDs. The nature and specificity of RGD effects on cognitive and behavioral traits is an area of intense investigation: RGDs are frequently associated with more than one psychiatric condition, and those studied to date affect, to varying degrees, a broad range of developmental and cognitive functions. Although many RGDs have large effects, phenotypic expression is typically influenced by additional genomic and environmental factors. There is emerging evidence that using polygenic risk scores in individuals with RGDs offers opportunities to refine prediction, thus allowing for the identification of those at greatest risk of psychiatric illness. However, translation into the clinic is hindered by roadblocks, which include limited genetic testing in clinical psychiatry, and the lack of guidelines for following individuals with RGDs, who are at high risk of developing psychiatric symptoms. The Genes to Mental Health Network (G2MH) is a newly funded National Institute of Mental Health initiative that will collect, share, and analyze large-scale data sets combining genomics and dimensional measures of psychopathology spanning diverse populations and geography. The authors present here the most recent understanding of the effects of RGDs on dimensional behavioral traits and risk for psychiatric conditions and discuss strategies that will be pursued within the G2MH network, as well as how expected results can be translated into clinical practice to improve patient outcomes

    Genes To Mental Health (G2MH):A Framework to Map the Combined Effects of Rare and Common Variants on Dimensions of Cognition and Psychopathology

    Get PDF
    Rare genomic disorders (RGDs) confer elevated risk for neurodevelopmental psychiatric disorders. In this era of intense genomics discoveries, the landscape of RGDs is rapidly evolving. However, there has not been comparable progress to date in scalable, harmonized phenotyping methods. As a result, beyond associations with categorical diagnoses, the effects on dimensional traits remain unclear for many RGDs. The nature and specificity of RGD effects on cognitive and behavioral traits is an area of intense investigation: RGDs are frequently associated with more than one psychiatric condition, and those studied to date affect, to varying degrees, a broad range of developmental and cognitive functions. Although many RGDs have large effects, phenotypic expression is typically influenced by additional genomic and environmental factors. There is emerging evidence that using polygenic risk scores in individuals with RGDs offers opportunities to refine prediction, thus allowing for the identification of those at greatest risk of psychiatric illness. However, translation into the clinic is hindered by roadblocks, which include limited genetic testing in clinical psychiatry, and the lack of guidelines for following individuals with RGDs, who are at high risk of developing psychiatric symptoms. The Genes to Mental Health Network (G2MH) is a newly funded National Institute of Mental Health initiative that will collect, share, and analyze large-scale data sets combining genomics and dimensional measures of psychopathology spanning diverse populations and geography. The authors present here the most recent understanding of the effects of RGDs on dimensional behavioral traits and risk for psychiatric conditions and discuss strategies that will be pursued within the G2MH network, as well as how expected results can be translated into clinical practice to improve patient outcomes

    The Liquidity Trap, the Great Depression, and Unconventional Policy: Reading Keynes at the Zero Lower Bound

    No full text
    corecore