220 research outputs found

    Vascular Health in American Football Players: Cardiovascular Risk Increased in Division III Players

    Get PDF
    Studies report that football players have high blood pressure (BP) and increased cardiovascular risk. There are over 70,000 NCAA football players and 450 Division III schools sponsor football programs, yet limited research exists on vascular health of athletes. This study aimed to compare vascular and cardiovascular health measures between football players and nonathlete controls. Twenty-three athletes and 19 nonathletes participated. Vascular health measures included flow-mediated dilation (FMD) and carotid artery intima-media thickness (IMT). Cardiovascular measures included clinic and 24 hr BP levels, body composition, VO2 max, and fasting glucose/cholesterol levels. Compared to controls, football players had a worse vascular and cardiovascular profile. Football players had thicker carotid artery IMT (0.49 ± 0.06 mm versus 0.46 ± 0.07 mm) and larger brachial artery diameter during FMD (4.3 ± 0.5 mm versus 3.7 ± 0.6 mm), but no difference in percent FMD. Systolic BP was significantly higher in football players at all measurements: resting (128.2 ± 6.4 mmHg versus 122.4 ± 6.8 mmHg), submaximal exercise (150.4 ± 18.8 mmHg versus 137.3 ± 9.5 mmHg), maximal exercise (211.3 ± 25.9 mmHg versus 191.4 ± 19.2 mmHg), and 24-hour BP (124.9 ± 6.3 mmHg versus 109.8 ± 3.7 mmHg). Football players also had higher fasting glucose (91.6 ± 6.5 mg/dL versus 86.6 ± 5.8 mg/dL), lower HDL (36.5±11.2 mg/dL versus 47.1±14.8 mg/dL), and higher body fat percentage (29.2±7.9% versus 23.2±7.0%). Division III collegiate football players remain an understudied population and may be at increased cardiovascular risk

    Epileptiform Activity in Alcohol Dependent Patients and Possibilities of Its Indirect Measurement

    Get PDF
    Background: Alcohol dependence during withdrawal and also in abstinent period in many cases is related to reduced inhibitory functions and kindling that may appear in the form of psychosensory symptoms similar to temporal lobe epilepsy frequently in conditions of normal EEG and without seizures. Because temporal lobe epileptic activity tend to spread between hemispheres, it is possible to suppose that measures reflecting interhemispheric information transfer such as electrodermal activity (EDA) might be related to the psychosensory symptoms. Methods and Findings: We have performed measurement of bilateral EDA, psychosensory symptoms (LSCL-33) and alcohol craving (ACQ) in 34 alcohol dependent patients and 32 healthy controls. The results in alcohol dependent patients show that during rest conditions the psychosensory symptoms (LSCL-33) are related to EDA transinformation (PTI) between left and right EDA records (Spearman r = 0.44, p,0.01). Conclusions: The result may present potentially useful clinical finding suggesting a possibility to indirectly assess epileptiform changes in alcohol dependent patients

    Population health diagnosis with an ecohealth approach

    Get PDF
    OBJECTIVE To analyze the characteristics of health diagnosis according to the ecohealth approach in rural and urban communities in Mexico.METHODS Health diagnosis were conducted in La Nopalera, from December 2007 to October 2008, and in Atlihuayan, from December 2010 to October 2011. The research was based on three principles of the ecohealth approach: transdisciplinarity, community participation, gender and equity. To collect information, a joint methodology and several techniques were used to stimulate the participation of inhabitants. The diagnostic exercise was carried out in five phases that went from collecting information to prioritization of problems.RESULTS The constitution of the transdisciplinary team, as well as the participation of the population and the principle of gender/equity were differentials between the communities. In the rural community, the active participation of inhabitants and authorities was achieved and the principles of transdisciplinarity and gender/equity were incorporated.CONCLUSIONS With all the difficulties that entails the boost in participation, the incorporation of gender/equity and transdisciplinarity in health diagnosis allowed a holistic public health approach closer to the needs of the population

    Functional Modifications of Acid-Sensing Ion Channels by Ligand-Gated Chloride Channels

    Get PDF
    Together, acid-sensing ion channels (ASICs) and epithelial sodium channels (ENaC) constitute the majority of voltage-independent sodium channels in mammals. ENaC is regulated by a chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Here we show that ASICs were reversibly inhibited by activation of GABAA receptors in murine hippocampal neurons. This inhibition of ASICs required opening of the chloride channels but occurred with both outward and inward GABAA receptor-mediated currents. Moreover, activation of the GABAA receptors modified the pharmacological features and kinetic properties of the ASIC currents, including the time course of activation, desensitization and deactivation. Modification of ASICs by open GABAA receptors was also observed in both nucleated patches and outside-out patches excised from hippocampal neurons. Interestingly, ASICs and GABAA receptors interacted to regulate synaptic plasticity in CA1 hippocampal slices. The activation of glycine receptors, which are similar to GABAA receptors, also modified ASICs in spinal neurons. We conclude that GABAA receptors and glycine receptors modify ASICs in neurons through mechanisms that require the opening of chloride channels

    Carotid Artery IMT, Blood Pressure, and Cardiovascular Risk Factors in Males and Females

    Get PDF
    International Journal of Exercise Science 9(4): 482-490, 2016. Previous studies have investigated carotid artery intima-media thickness (IMT) and blood pressure and found a direct correlation between the two. It is known that adult females have better cardiovascular health than males until a certain stage of life, yet limited research has examined gender differences in vascular function. Thus, the purpose of this study was to investigate vascular structure and function, blood pressure, and blood glucose/cholesterol levels in relation to gender differences in young healthy adults. On three separate days, 44 adults (26.30 ±11.9yrs; 24M, 20F) completed a carotid IMT ultrasound, a flow-mediated dilation (FMD), a fasted glucose and cholesterol test, a 24hr ambulatory blood pressure monitoring, a VO2max test, and a body composition measurement. Females had lower systolic blood pressure, lower diastolic blood pressure, lower LDL/HDL ratios, lower body mass index, a higher HDL count, and lower plasma glucose levels than males (p \u3c 0.05 for all), all of which suggest better cardiovascular health. However, we found no gender differences in vascular health measures, IMT and FMD. Our results suggest that while young adult females have better cardiovascular health than males, endothelial function may not yet be affected in the young adult years

    Vascular Health in American Football Players: Cardiovascular Risk Increased in Division III Players

    Get PDF
    Studies report that football players have high blood pressure (BP) and increased cardiovascular risk. There are over 70,000 NCAA football players and 450 Division III schools sponsor football programs, yet limited research exists on vascular health of athletes. This study aimed to compare vascular and cardiovascular health measures between football players and nonathlete controls. Twenty-three athletes and 19 nonathletes participated. Vascular health measures included flow-mediated dilation (FMD) and carotid artery intima-media thickness (IMT). Cardiovascular measures included clinic and 24 hr BP levels, body composition, VO2 max, and fasting glucose/cholesterol levels. Compared to controls, football players had a worse vascular and cardiovascular profile. Football players had thicker carotid artery IMT (0.49 ± 0.06 mm versus 0.46 ± 0.07 mm) and larger brachial artery diameter during FMD (4.3±0.5 mm versus 3.7±0.6 mm), but no difference in percent FMD. Systolic BP was significantly higher in football players at all measurements: resting (128.2±6.4 mmHg versus 122.4±6.8 mmHg), submaximal exercise (150.4±18.8 mmHg versus 137.3±9.5 mmHg), maximal exercise (211.3±25.9 mmHg versus 191.4±19.2 mmHg), and 24-hour BP (124.9±6.3 mmHg versus 109.8±3.7 mmHg). Football players also had higher fasting glucose (91.6±6.5 mg/dL versus 86.6±5.8 mg/dL), lower HDL (36.5±11.2 mg/dL versus 47.1±14.8 mg/dL), and higher body fat percentage (29.2±7.9% versus 23.2±7.0%). Division III collegiate football players remain an understudied population and may be at increased cardiovascular risk

    Neuregulin-1 Regulates Cell Adhesion via an ErbB2/Phosphoinositide-3 Kinase/Akt-Dependent Pathway: Potential Implications for Schizophrenia and Cancer

    Get PDF
    Neuregulin-1 (NRG1) is a putative schizophrenia susceptibility gene involved extensively in central nervous system development as well as cancer invasion and metastasis. Using a B lymphoblast cell model, we previously demonstrated impairment in NRG1alpha-mediated migration in cells derived from patients with schizophrenia as well as effects of risk alleles in NRG1 and catechol-O-methyltransferase (COMT), a second gene implicated both in schizophrenia susceptibility and in cancer.Here, we examine cell adhesion, an essential component process of cell motility, using an integrin-mediated cell adhesion assay based on an interaction between ICAM-1 and the CD11a/CD18 integrin heterodimer expressed on lymphoblasts. In our assay, NRG1alpha induces lymphoblasts to assume varying levels of adhesion characterized by time-dependent fluctuations in the firmness of attachment. The maximum range of variation in adhesion over sixty minutes correlates strongly with NRG1alpha-induced migration (r(2) = 0.61). NRG1alpha-induced adhesion variation is blocked by erbB2, PI3K, and Akt inhibitors, but not by PLC, ROCK, MLCK, or MEK inhibitors, implicating the erbB2/PI3K/Akt1 signaling pathway in NRG1-stimulated, integrin-mediated cell adhesion. In cell lines from 20 patients with schizophrenia and 20 normal controls, cells from patients show a significant deficiency in the range of NRG1alpha-induced adhesion (p = 0.0002). In contrast, the response of patient-derived cells to phorbol myristate acetate is unimpaired. The COMT Val108/158Met genotype demonstrates a strong trend towards predicting the range of the NRG1alpha-induced adhesion response with risk homozygotes having decreased variation in cell adhesion even in normal subjects (p = 0.063).Our findings suggest that a mechanism of the NRG1 genetic association with schizophrenia may involve the molecular biology of cell adhesion

    Direction-Selective Circuitry in Rat Retina Develops Independently of GABAergic, Cholinergic and Action Potential Activity

    Get PDF
    The ON-OFF direction selective ganglion cells (DSGCs) in the mammalian retina code image motion by responding much more strongly to movement in one direction. They do so by receiving inhibitory inputs selectively from a particular sector of processes of the overlapping starburst amacrine cells, a type of retinal interneuron. The mechanisms of establishment and regulation of this selective connection are unknown. Here, we report that in the rat retina, the morphology, physiology of the ON-OFF DSGCs and the circuitry for coding motion directions develop normally with pharmacological blockade of GABAergic, cholinergic activity and/or action potentials for over two weeks from birth. With recent results demonstrating light independent formation of the retinal DS circuitry, our results strongly suggest the formation of the circuitry, i.e., the connections between the second and third order neurons in the visual system, can be genetically programmed, although emergence of direction selectivity in the visual cortex appears to require visual experience

    Involvement of the Glycogen Synthase Kinase-3 Signaling Pathway in TBI Pathology and Neurocognitive Outcome

    Get PDF
    BACKGROUND: Traumatic brain injury (TBI) sets in motion cascades of biochemical changes that result in delayed cell death and altered neuronal architecture. Studies have demonstrated that inhibition of glycogen synthase kinase-3 (GSK-3) effectively reduces apoptosis following a number of stimuli. The Wnt family of proteins, and growth factors are two major factors that regulate GSK-3 activity. In the absence of stimuli, GSK-3 is constitutively active and is complexed with Axin, adenomatous polyposis coli (APC), and casein kinase Iα (CK1α) and phosphorylates ß-Catenin leading to its degradation. Binding of Wnt to Frizzled receptors causes the translocation of GSK-3 to the plasma membrane, where it phosphorylates and inactivates the Frizzled co-receptor lipoprotein-related protein 6 (LRP6). Furthermore, the translocation of GSK-3 reduces ß-Catenin phosphorylation and degradation, leading to ß-Catenin accumulation and gene expression. Growth factors activate Akt, which in turn inhibits GSK-3 activity by direct phosphorylation, leading to a reduction in apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: Using a rodent model, we found that TBI caused a rapid, but transient, increase in LRP6 phosphorylation that is followed by a modest decrease in ß-Catenin phosphorylation. Phospho-GSK-3β immunoreactivity was found to increase three days post injury, a time point at which increased Akt activity following TBI has been observed. Lithium influences several neurochemical cascades, including inhibiting GSK-3. When the efficacy of daily lithium was assessed, reduced hippocampal neuronal cell loss and learning and memory improvements were observed. These influences were partially mimicked by administration of the GSK-3-selective inhibitor SB-216763, as this drug resulted in improved motor function, but only a modest improvement in memory retention and no overt neuroprotection. CONCLUSION/SIGNIFICANCE: Taken together, our findings suggest that selective inhibition of GSK-3 may offer partial cognitive improvement. As a broad spectrum inhibitor of GSK-3, lithium offers neuroprotection and robust cognitive improvement, supporting its clinical testing as a treatment for TBI

    Newly Developed Mg2+–Selective Fluorescent Probe Enables Visualization of Mg2+ Dynamics in Mitochondria

    Get PDF
    Mg2+ plays important roles in numerous cellular functions. Mitochondria take part in intracellular Mg2+ regulation and the Mg2+ concentration in mitochondria affects the synthesis of ATP. However, there are few methods to observe Mg2+ in mitochondria in intact cells. Here, we have developed a novel Mg2+–selective fluorescent probe, KMG-301, that is functional in mitochondria. This probe changes its fluorescence properties solely depending on the Mg2+ concentration in mitochondria under physiologically normal conditions. Simultaneous measurements using this probe together with a probe for cytosolic Mg2+, KMG-104, enabled us to compare the dynamics of Mg2+ in the cytosol and in mitochondria. With this method, carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP)–induced Mg2+ mobilization from mitochondria to the cytosol was visualized. Although a FCCP–induced decrease in the Mg2+ concentration in mitochondria and an increase in the cytosol were observed both in differentiated PC12 cells and in hippocampal neurons, the time-courses of concentration changes varied with cell type. Moreover, the relationship between mitochondrial Mg2+ and Parkinson's disease was analyzed in a cellular model of Parkinson's disease by using the 1-methyl-4-phenylpyridinium ion (MPP+). A gradual decrease in the Mg2+ concentration in mitochondria was observed in response to MPP+ in differentiated PC12 cells. These results indicate that KMG-301 is useful for investigating Mg2+ dynamics in mitochondria. All animal procedures to obtain neurons from Wistar rats were approved by the ethical committee of Keio University (permit number is 09106-(1))
    • …
    corecore