46 research outputs found

    The effect of CEO option compensation on the capital structure : a natural experiment

    Get PDF
    Firms simultaneously choose both their capital and their executive compensation structure. Using the Internal Revenue Code 162(m) tax law as an exogenous shock to compensation structure in a natural experiment setting, I identify firm leverage changes as a result of chief executive officer (CEO) option compensation changes. The evidence provides strong support for debt agency theory. Firms appear to decrease leverage when CEOs are paid with more options and when CEO options become a higher percentage of future cash flows. The findings are robust to controlling for corporate governance and convertible debt

    Lymphocyte activation gene 3: a novel therapeutic target in chronic lymphocytic leukemia

    Get PDF
    A novel therapeutic approach in cancer, attempting to stimulate host anti-tumor immunity, involves blocking of immune checkpoints. Lymphocyte activation gene 3 (LAG3) is an immune checkpoint receptor expressed on activated/exhausted T cells. When engaged by the major histocompatibility complex (MHC) class II molecules, LAG3 negatively regulates T-cell function, thereby contributing to tumor escape. Intriguingly, a soluble LAG3 variant activates both immune and malignant MHC class II-presenting cells. In the study herein, we examined the role of LAG3 in the pathogenesis of chronic lymphocytic leukemia, an MHC class II-presenting malignancy, and show that chronic lymphocytic leukemia cells express and secrete LAG3. High levels of surface and soluble LAG3 were associated with the unmutated immunoglobulin variable heavy chain leukemic subtype and a shorter median time from diagnosis to first treatment. Utilizing a mechanism mediated through MHC class II engagement, recombinant soluble LAG3-Ig fusion protein, LAG3-Fc, activated chronic lymphocytic leukemia cells, induced anti-apoptotic pathways and protected the cells from spontaneous apoptosis, effects mediated by SYK, BTK and MAPK signaling. Moreover, LAG3 blocking antibody enhanced in vitro T-cell activation. Our data suggest that soluble LAG3 promotes leukemic cell activation and anti-apoptotic effects through its engagement with MHC class II. Furthermore, MHC class II-presenting chronic lymphocytic leukemia cells may affect LAG3-presenting T cells and impose immune exhaustion on their microenvironment; hence, blocking LAG3-MHC class II interactions is a potential therapeutic target in chronic lymphocytic leukemia

    Characterization of Coding Synonymous and Non-Synonymous Variants in ADAMTS13 Using Ex Vivo and In Silico Approaches

    Get PDF
    Synonymous variations, which are defined as codon substitutions that do not change the encoded amino acid, were previously thought to have no effect on the properties of the synthesized protein(s). However, mounting evidence shows that these “silent” variations can have a significant impact on protein expression and function and should no longer be considered “silent”. Here, the effects of six synonymous and six non-synonymous variations, previously found in the gene of ADAMTS13, the von Willebrand Factor (VWF) cleaving hemostatic protease, have been investigated using a variety of approaches. The ADAMTS13 mRNA and protein expression levels, as well as the conformation and activity of the variants have been compared to that of wild-type ADAMTS13. Interestingly, not only the non-synonymous variants but also the synonymous variants have been found to change the protein expression levels, conformation and function. Bioinformatic analysis of ADAMTS13 mRNA structure, amino acid conservation and codon usage allowed us to establish correlations between mRNA stability, RSCU, and intracellular protein expression. This study demonstrates that variants and more specifically, synonymous variants can have a substantial and definite effect on ADAMTS13 function and that bioinformatic analysis may allow development of predictive tools to identify variants that will have significant effects on the encoded protein

    CREB Regulates AChE-R-Induced Proliferation of Human Glioblastoma Cells

    Get PDF
    The cyclic adenosine monophosphate (AMP) response element-binding protein, CREB, often modulates stress responses. Here, we report that CREB suppresses the glioblastoma proliferative effect of the stress-induced acetylcholinesterase variant, AChE-R. In human U87MG glioblastoma cells, AChE-R formed a triple complex with protein kinase C (PKC) ε and the scaffold protein RACK1, enhanced PKCε phosphorylation, and facilitated BrdU incorporation. Either overexpressed CREB, or antisense destruction of AChE-R mRNA, PKC, or protein kinase A (PKA) inhibitors—but not CREB combined with PKC inhibition suppressed—this proliferation, suggesting that CREB's repression of this process involves a PKC-mediated pathway, whereas impaired CREB regulation allows AChE-R-induced, PKA-mediated proliferation of glioblastoma tumors

    SLP76 integrates into the B-cell receptor signaling cascade in chronic lymphocytic leukemia cells and is associated with an aggressive disease course

    Get PDF
    I In the last decade, the B-cell receptor has emerged as a pivotal stimulus in the pathogenesis of chronic lymphocytic leukemia, and a very feasible therapeutic target in this disease. B-cell receptor responsiveness in chronic lymphocytic leukemia cells is heterogeneous among patients and correlates with aggressiveness of the disease. Here we show, for the first time, that SLP76, a key scaffold protein in T-cell receptor signaling, is ectopically expressed in chronic lymphocytic leukemia cells, with variable levels among patients, and correlates positively with unmutated immunoglobulin heavy chain variable gene status and ZAP-70 expression. We found that SLP76 was functionally active in chronic lymphocytic leukemia cells. A SYK-dependent basal level of phosphorylated SLP76 exists in the cells, and upon B-cell receptor engagement, SLP76 tyrosine phosphorylation is significantly enhanced concomitantly with increased physical association with BTK. B-cell receptor-induced SLP76 phosphorylation is mediated by upstream signaling events involving LCK and SYK. Knockdown of SLP76 in the cells resulted in decreased induction of BTK, PLCγ2 and IκB phosphorylation, as well as cell viability after B-cell receptor activation with anti-IgM. Consistent with our biochemical findings, high total SLP76 expression in chronic lymphocytic leukemia cells correlated with a more aggressive disease course. In conclusion: SLP76 is ectopically expressed in chronic lymphocytic leukemia cells where it plays a role in B-cell receptor signaling

    REGEN‐COV antibody combination in patients with lymphoproliferative malignancies and SARS‐CoV‐2 infection

    No full text
    Abstract Patients with lymphoproliferative diseases are at high risk for SARS‐CoV‐2‐related complications and mortality. The role of casirivimab and imdevimab (REGEN‐COV), a neutralizing antibody cocktail, to treat immunocompromised hemato‐oncological patients with SARS‐CoV‐2 disease 2019 (Covid‐19) remains unknown. Here, we present our clinical experience on the outcome of 15 hematological patients treated with REGEN‐COV for SARS‐CoV‐2 infection. Most patients failed to respond or achieved low antibody titer after 2–3 doses of BNT162b2 mRNA vaccine. All patients experienced clinical improvement with no mortality within a median follow‐up of 70 days. In conclusion, early administration of REGEN‐COV to high‐risk hematological patients may prevent clinical deterioration and mortality from SARS‐CoV‐2 infection. The effectiveness of neutralizing antibodies may vary depending on the virus variants and in particular with the omicron variant (B.1.1.529)
    corecore