187 research outputs found
GANIL Status report
The GANIL-Spiral facility (Caen, France) is dedicated to the acceleration of
heavy ion beams for nuclear physics, atomic physics, radiobiology and material
irradiation. The production of radioactive ion beams for nuclear physics
studies represents the main part of the activity. The facility possesses a
versatile combination of equipments, which permits to produce accelerated
radioactive ion beams with two complementary methods: Isotope Separation In
Line (ISOL) and In-Flight Separation techniques (IFS). Considering the future
of GANIL, SPIRAL II projects aims to produce high intensity secondary beams, by
fission induced with a 5 mA deuteron beam on an uranium target.Comment: 5 pages, 5 figures, to be appear in the proceedings of the 17th
International Conference on Cyclotrons and their Application
Obesity and variants of the GHRL (ghrelin) and BCHE (butyrylcholinesterase) genes
Ghrelin coded by the GHRL gene is related to weight-gain, its deactivation possibly depending on its hydrolyzation by butyrylcholinesterase (BChE) encoded by the BCHE gene, an enzyme already associated with the body mass index (BMI). The aim was to search for relationships between SNPs of the GHRL and BCHE genes with BChE activity, BMI and obesity in 144 obese and 153 nonobese Euro-Brazilian male blood donors. In the obese individuals, a significant association with higher BChE activity, in the 72LM+72MM; –116GG genotype class (GHRL and BCHE genes, respectively) was noted. No significant differences were found otherwise, through comparisons between obese and control individuals, of genotype and allele frequencies in SNPs of the GHRL gene (Arg51Gln and Leu72Met), or mean BMI between 72LL and 72LM+72MM genotypes. Although there appears to be no direct relationship between the examined GHRL SNPs and BMI, the association of the 72M SNP with higher BChE activity in obese subjects probably points to a regulatory mechanism, thereby implying the influence of the GHRL gene on BChE expression, and a consequential metabolic role in the complex process of fat utilization
Molecular forms of butyrylcholinesterase and obesity
This study compared obese (N = 134) and unobese (N = 92) male blood donors, regarding the relative intensity (RI) and activity of different molecular forms (G1, G2, G4 and G1-ALB) of butyrylcholinesterase (BChE, EC 3.1.1.8) found in plasma, thereby searching for an association between these variables with obesity and SNPs of exons 1 and 4 of the BCHE gene. It was shown that obese and unobese individuals do not differ in the RI of each BChE band, even when classifying the sample into three genotypes of exons 1 and 4 of the BCHE gene (-116GG/539AA, -116GG/539AT, -116GA/539AT). Although the mean BChE activity of each band was significantly higher in obese than in unobese blood donors, the proportions of BChE bands were maintained, even under the metabolic stress associated to obesity, thereby leading to infer that this proportion is somehow regulated, and may therefore be important for BChE functions
Status report on GANIL-SPIRAL1
International audienceThe GANIL facility (Caen, France) (Figure 1) is dedicated to the acceleration of heavy ion beams for nuclear physics, atomic physics, radiobiology and material irradiation. The production of radioactive ion beams for nuclear physics studies represents the main part of the activity. Two complementary methods are used: the Isotope Separation On-Line (ISOL, the SPIRAL1 facility) and the In-Flight Separation techniques (IFS). SPIRAL1, the ISOL facilty, is running since 2001, producing and post-accelerating radioactive ion beams. The energy range available goes from 1.2 MeV/A to 25 MeV/A with a compact cyclotron (CIME, K=265). The running mode of this machine will be recalled as well as a review of the operation from 2001 to 2006. A point will be done on the past, present and future projects which allow to continue to develop the capacities of this equipment and to answer the new demands from the physicists, such as new beamlines for low or high energy experiments, new diagnotics of control or the adaptation of an identification system using Silicon, Germanium or plastic detectors in the requirements of the operation evironnement
Investigation of Association between Susceptibility to Leprosy and SNPs inside and near the BCHE Gene of Butyrylcholinesterase
Leprosy is a chronic disease caused by Mycobacterium leprae and affects the skin and the peripheral nervous system. Butyrylcholinesterase is coded by the BCHE gene, and the atypical allele (70G; rs1799807) has been investigated as a leprosy risk factor, with conflicting results. The present study estimated the frequencies of variants of rs1799807 and of five additional SNPs at the BCHE gene or near it: rs1126680, rs1803274, rs2863381, rs4440084, and rs4387996. A total of 167 patients and 150 healthy controls were genotyped by TaqMan PCR. Significantly higher allelic (70G) and genotypic (70DG) frequencies in rs1799807 were found in the patient group, with odds ratio (OR) of 6.33 (1.40 to 28.53) for the heterozygote. This finding was replicated in a comparison of the cases against a control group of 361 blood donors. The present data suggest that the atypical BChE variant may predispose to leprosy per se
Nuclear structure and reaction studies at SPIRAL
The SPIRAL facility at GANIL, operational since 2001, is described briefly.
The diverse physics program using the re-accelerated (1.2 to 25 MeV/u) beams
ranging from He to Kr and the instrumentation specially developed for their
exploitation are presented. Results of these studies, using both direct and
compound processes, addressing various questions related to the existence of
exotic states of nuclear matter, evolution of new "magic numbers", tunnelling
of exotic nuclei, neutron correlations, exotic pathways in astrophysical sites
and characterization of the continuum are discussed. The future prospects for
the facility and the path towards SPIRAL2, a next generation ISOL facility, are
also briefly presented.Comment: 48 pages, 27 figures. Accepted for publication in Journal of Physics
WNT6 is a novel oncogenic prognostic biomarker in human glioblastoma
Glioblastoma (GBM) is a universally fatal brain cancer, for which novel therapies targeting specific underlying oncogenic events are urgently needed. While the WNT pathway has been shown to be frequently activated in GBM, constituting a potential therapeutic target, the relevance of WNT6, an activator of this pathway, remains unknown. Methods: WNT6 protein and mRNA levels were evaluated in GBM. WNT6 levels were silenced or overexpressed in GBM cells to assess functional effects in vitro and in vivo. Phospho-kinase arrays and TCF/LEF reporter assays were used to identify WNT6-signaling pathways, and significant associations with stem cell features and cancer-related pathways were validated in patients. Survival analyses were performed with Cox regression and Log-rank tests. Meta-analyses were used to calculate the estimated pooled effect. Results: We show that WNT6 is significantly overexpressed in GBMs, as compared to lower-grade gliomas and normal brain, at mRNA and protein levels. Functionally, WNT6 increases typical oncogenic activities in GBM cells, including viability, proliferation, glioma stem cell capacity, invasion, migration, and resistance to temozolomide chemotherapy. Concordantly, in in vivo orthotopic GBM mice models, using both overexpressing and silencing models, WNT6 expression was associated with shorter overall survival, and increased features of tumor aggressiveness. Mechanistically, WNT6 contributes to activate typical oncogenic pathways, including Src and STAT, which intertwined with the WNT pathway may be critical effectors of WNT6-associated aggressiveness in GBM. Clinically, we establish WNT6 as an independent prognostic biomarker of shorter survival in GBM patients from several independent cohorts. Conclusion: Our findings establish WNT6 as a novel oncogene in GBM, opening opportunities to develop more rational therapies to treat this highly aggressive tumor.FCT - Foundation for Science and Technology (PTDC/SAU-GMG/113795/2009 and IF/00601/2012 to B.M.C.; SFRH/BD/92786/2013 to C.S.G.; SFRH/BD/88121/2012 to J.V.C.; SFRH/BD/81042/2011 to M.P.; SFRH/BD/93443/2013 to S.Q.) and Fundação Calouste Gulbenkian (B.M.C.), by FEDER funds through the Operational Programme Competitiveness Factors - COMPETE and National Funds through FCT under the project POCI-01-0145-FEDER-007038; by the project NORTE-01-0145-FEDER-000013 and NORTE-01-0246-FEDER-000012, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF); and by the project NORTE-01-0145-FEDER-000023, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER)info:eu-repo/semantics/publishedVersio
- …