110 research outputs found

    Selective nanomanipulation using optical forces

    Full text link
    We present a detailed theoretical study of the recent proposal for selective nanomanipulation of nanometric particles above a substrate using near-field optical forces [Chaumet {\it et al.} Phys. Rev. Lett. {\bf 88}, 123601 (2002)]. Evanescent light scattering at the apex of an apertureless near-field probe is used to create an optical trap. The position of the trap is controlled on a nanometric scale via the probe and small objects can be selectively trapped and manipulated. We discuss the influence of the geometry of the particles and the probe on the efficiency of the trap. We also consider the influence of multiple scattering among the particles on the substrate and its effect on the robustness of the trap.Comment: 12 pages, 17 figure

    Optical binding of particles with or without the presence of a flat dielectric surface

    Full text link
    Optical fields can induce forces between microscopic objects, thus giving rise to new structures of matter. We study theoretically these optical forces between two spheres, either isolated in water, or in presence of a flat dielectric surface. We observe different behavior in the binding force between particles at large and at small distances (in comparison with the wavelength) from each other. This is due to the great contribution of evanescent waves at short distances. We analyze how the optical binding depends of the size of the particles, the material composing them, the wavelength and, above all, on the polarization of the incident beam. We also show that depending on the polarization, the force between small particles at small distances changes its sign. Finally, the presence of a substrate surface is analyzed showing that it only slightly changes the magnitudes of the forces, but not their qualitative nature, except when one employs total internal reflection, case in which the particles are induced to move together along the surface.Comment: 8 pages, 9 figures, and 1 tabl

    An Ultrawideband Time Reversal-based RADAR for Microwave-range Imaging in Cluttered Media

    No full text
    This work presents a new RADAR prototype built for the purpose of imaging targets located in a cluttered environment. The system is capable of performing Phase Conjugation experiments in the ultrawideband [2-4] GHz. In addition, applying the D.O.R.T. method to the inter-element matrix allows us to selectively focus onto targets, hence reducing the clutter contribution. We aim to experimentally explore the use of this focusing wave into an inversion algorithm, in order to improve its robustness against noise. Before testing this idea, we show here the first results validating the prototype separately in the frame of selective focusing via the DORT method and of multistatic-multifrequency inversion

    Isotropic Single Objective (ISO) microscopy : Theory and Experiment

    No full text
    International audienceIsotropic single-objective (ISO) microscopy is a recently proposed imaging technique that can theoretically exhibit the same axial and transverse resolutions as 4Pi microscopy while using a classical single-objective confocal microscope. This achievement is obtained by placing the sample on a mirror and shaping the illumination beam so that the interference of the incident and mirror-reflected fields yields a quasi-spherical spot. In this work, we model the image formation in the ISO fluorescence microscope and simulate its point spread function. Then, we describe the experimental implementation and discuss its practical difficulties

    Two-photon fluorescence isotropic-single-objective microscopy

    No full text
    International audienceTwo-photon excitation provides efficient optical sectioning in three-dimensional fluorescence microscopy, independently of a confocal detection. In two-photon laser-scanning microscopy, the image resolution is governed by the volume of the excitation light spot, which is obtained by focusing the incident laser beam through the objective lens of the microscope. The light spot being strongly elongated along the optical axis, the axial resolution is much lower than the transverse one. In this Letter we show that it is possible to strongly reduce the axial size of the excitation spot by shaping the incident beam and using a mirror in place of a standard glass slide to support the sample. Provided that the contribution of sidelobes can be removed through deconvolution procedures, this approach should allow us to achieve similar axial and lateral resolution

    Coupled Dipole Method Determination of the Electromagnetic Force on a Particle over a Flat Dielectric Substrate

    Full text link
    We present a theory to compute the force due to light upon a particle on a dielectric plane by the Coupled Dipole Method (CDM). We show that, with this procedure, two equivalent ways of analysis are possible, both based on Maxwell's stress tensor. The interest in using this method is that the nature and size or shape of the object, can be arbitrary. Even more, the presence of a substrate can be incorporated. To validate our theory, we present an analytical expression of the force due to the light acting on a particle either in presence, or not, of a surface. The plane wave illuminating the sphere can be either propagating or evanescent. Both two and three dimensional calculations are studied.Comment: 10 pages, 8 figures and 3 table

    Managing uncertainty: a review of food system scenario analysis and modelling

    Get PDF
    Complex socio-ecological systems like the food system are unpredictable, especially to long-term horizons such as 2050. In order to manage this uncertainty, scenario analysis has been used in conjunction with food system models to explore plausible future outcomes. Food system scenarios use a diversity of scenario types and modelling approaches determined by the purpose of the exercise and by technical, methodological and epistemological constraints. Our case studies do not suggest Malthusian futures for a projected global population of 9 billion in 2050; but international trade will be a crucial determinant of outcomes; and the concept of sustainability across the dimensions of the food system has been inadequately explored so far. The impact of scenario analysis at a global scale could be strengthened with participatory processes involving key actors at other geographical scales. Food system models are valuable in managing existing knowledge on system behaviour and ensuring the credibility of qualitative stories but they are limited by current datasets for global crop production and trade, land use and hydrology. Climate change is likely to challenge the adaptive capacity of agricultural production and there are important knowledge gaps for modelling research to address

    L-Ilf3 and L-NF90 Traffic to the Nucleolus Granular Component: Alternatively-Spliced Exon 3 Encodes a Nucleolar Localization Motif

    Get PDF
    Ilf3 and NF90, two proteins containing double-stranded RNA-binding domains, are generated by alternative splicing and involved in several functions. Their heterogeneity results from posttranscriptional and posttranslational modifications. Alternative splicing of exon 3, coding for a 13 aa N-terminal motif, generates for each protein a long and short isoforms. Subcellular fractionation and localization of recombinant proteins showed that this motif acts as a nucleolar localization signal. Deletion and substitution mutants identified four arginines, essential for nucleolar targeting, and three histidines to stabilize the proteins within the nucleolus. The short isoforms are never found in the nucleoli, whereas the long isoforms are present in the nucleoplasm and the nucleoli. For Ilf3, only the posttranslationally-unmodified long isoform is nucleolar, suggesting that this nucleolar targeting is abrogated by posttranslational modifications. Confocal microscopy and FRAP experiments have shown that the long Ilf3 isoform localizes to the granular component of the nucleolus, and that L-Ilf3 and L-NF90 exchange rapidly between nucleoli. The presence of this 13 aminoacid motif, combined with posttranslational modifications, is responsible for the differences in Ilf3 and NF90 isoforms subcellular localizations. The protein polymorphism of Ilf3/NF90 and the various subcellular localizations of their isoforms may partially explain the various functions previously reported for these proteins
    corecore