8,032 research outputs found

    Break Even Analysis of Mining Projects

    Get PDF
    The economics of the resources industry are unique. All mining is subject to uncertainties not applicable to other industries. Every mine is different. Industry economics are difficult to quantify and categorize. Information is very costly. In major mining countries, there is now a real dichotomy. The products of the minerals industry are essential primary ingredients in almost everything used in an advanced society, yet their availability is often taken for granted. In the developed world, the value of mining is increasingly being called into question. The difficulty in making profits is compounded by political uncertainties and environmental restrictions on top of the uncertainties created by nature. Costing and evaluation of any mining development are necessarily based on a specific plan, which has to be prepared assuming certain ore body characteristics. However ore bodies are seldom clearly defined, and the effort to find and delineate them is itself an economically significant task. The economics of mining will determine what parts are or are not included in the definition of ore. When mine economics change, the amount of material in the ground does not change, but the amount of economically viable ore does change. The amount of economically viable ore is also dependent on the assumptions used for its calculation and can change with a change in assumptions. The break-even point for a product is the point where total revenue received equals the total costs associated with the sale of the product. It has certain assumptions such as, selling prices will remain constant at all sales level, there is a linear relationship between sales volume and costs and production and sales quantities are equal. At the same time it suffers from certain limitations as break-even analysis is only a supply side (i.e. costs only) analysis, as it tells you nothing about what sales are actually likely to be for the product at these various prices

    Corneal Lymphatics: Role in Ocular Inflammation as Inducer and Responder of Adaptive Immunity

    Get PDF
    The normal cornea is devoid of lymphatic and blood vessels, thus suppressing both the afferent (lymphatic) and efferent (vascular) arms of the immune response–contributing to its ‘immune privilege’. Inflammation, however, negates this unique ‘immune’ and ‘angiogenic’ privilege of the cornea. Abnormal blood vessel growth from pre-existing limbal vessels into the cornea has been studied for many years, but it is only recently that the significance of new lymphatic vessels (lymphangiogenesis) in ocular inflammatory diseases has been demonstrated. Whereas blood vessels in inflamed ocular surface provide a route of entry for immune effector cells to the cornea, lymphatics facilitate the exit of antigen-presenting cells and antigenic material from the cornea to regional lymph nodes, thus promoting induction of adaptive immune response. This review summarizes the current evidence for lymphangiogenesis in the cornea, and describes its molecular mediators; and discusses the interface between corneal lymphangiogenesis and adaptive immunity. Furthermore, the pathophysiologic implications of corneal lymphangiogenesis in the setting of allo- and autoimmune-mediated corneal inflammation are discussed

    Multiwavelength Study of NGC 281 Region

    Get PDF
    We present a multiwavelength study of the NGC 281 complex which contains the young cluster IC 1590 at the center, using deep wide-field optical UBVI_c photometry, slitless spectroscopy along with archival data sets in the near-infrared (NIR) and X-ray. The extent of IC 1590 is estimated to be ~6.5 pc. The cluster region shows a relatively small amount of differential reddening. The majority of the identified young stellar objects (YSOs) are low mass PMS stars having age <1-2 Myr and mass 0.5-3.5 M_\odot. The slope (\Gamma) of the mass function for IC 1590, in the mass range 2 < M/M_\odot \le 54, is found to be -1.11+-0.15. The slope of the K-band luminosity function (0.37+-0.07) is similar to the average value (~0.4) reported for young clusters. The distribution of gas and dust obtained from the IRAS, CO and radio maps indicates clumpy structures around the central cluster. The radial distribution of the young stellar objects, their ages, \Delta(H-K) NIR-excess, and the fraction of classical T Tauri stars suggest triggered star formation at the periphery of the cluster region. However, deeper optical, NIR and MIR observations are needed to have a conclusive view of star formation scenario in the region. The properties of the Class 0/I and Class II sources detected by using the Spitzer mid-infrared observations indicate that a majority of the Class II sources are X-ray emitting stars, whereas X-ray emission is absent from the Class 0/I sources. The spatial distribution of Class 0/I and Class II sources reveals the presence of three sub-clusters in the NGC 281 West region.Comment: 29 pages, 21 figures and 11 tables, Accepted for the publication in PAS

    A survey of some new approaches in maximum age limit and accuracy of luminescence application to archaeological chronometry

    Get PDF
    This article does not have an abstract

    Optical and Near-infrared survey of the stellar contents associated with the star-forming Complex Sh2-252

    Get PDF
    We present the analyses of the stellar contents associated with the HII region Sh2-252 using UBVRI photometry, slit and slitless spectroscopy along with the NIR data from 2MASS for an area ~1 degree x 1 degree. We studied the sub-regions of Sh2-252 which includes four compact-HII (CHII) regions, namely A, B, C and E and two clusters NGC 2175s and Teutsch 136 (Teu 136). Of the fifteen spectroscopically observed bright stars, eight have been identified as massive members of spectral class earlier than B3. From the spectro-photometric analyses, we derived the average distance of the region as 2.4+/-0.2 kpc and the reddening of the massive members is found to vary between 0.35 to 2.1 mag. We found that NGC 2175s and Teu 136, located towards the eastern edge of the complex are the sub-clusters of Sh2-252. The stellar surface density distribution in K-band shows clustering associated with the regions A, C, E, NGC 2175s and Teu 136. We have also identified the candidate ionizing sources of the CHII regions. 61 H_alpha emission sources are identified using slitless spectroscopy. The distribution of the H_alpha emission sources and candidate YSOs with IR excess on the V/(V-I) CMD shows that a majority of them have approximate ages between 0.1 - 5 Myr and masses in the range of 0.3 - 2.5 M_sun. The CMDs of the candidate YSOs in the individual regions also show an age spread of 0.1 - 5 Myr for each of them. We calculated the KLFs for the sub-regions A, C, E, NGC 2175s and Teu 136. Within errors, the KLFs for all the sub-regions are found to be similar and comparable to that of young clusters of age < 5 Myr. We also estimated the mass functions (MFs) of the PMS sample of the individual regions in the mass range of 0.3 - 2.5 M_sun. In general, the slopes of the MFs of all the sub-regions are found comparable to the Salpeter value.Comment: published in MNRA

    Single grain (LRE)-Ba-Cu-O superconductors fabricated by top seeded melt growth in air

    Get PDF
    We have recently reported a practical processing method for the fabrication in air of large, single grain (LRE)-Ba-Cu-O [where LRE Nd, Sm, Eu and Gd] bulk superconductors that exhibit high Tc and high Jc. The process is based initially on the development of a new type of generic seed crystal that can promote effectively the epitaxial nucleation of any (RE)-Ba-Cu-O system and, secondly, by suppressing the formation of (LRE)/Ba solid solution in a controlled manner within large LRE-Ba-Cu-O grains processed in air. In this paper we investigate the degree of homogeneity of large grain Sm-Ba-Cu-O superconductors fabricated by this novel process. The technique offers a significant degree of freedom in terms of processing parameters and reproducibility in the growth of oriented single grains in air and yields bulk samples with significantly improved superconducting and field-trapping properties compared to those processed by conventional top seeded melt growth (TSMG)

    One-step simultaneous liquid phase exfoliation-induced chirality in graphene and their chirality-mediated microRNA delivery

    Get PDF
    Graphene (G) has established itself as an exciting prospect for a broad range of applications owing to its remarkable properties. Recent innovations in chiral nanosystems have led to sensors, drug delivery, catalysis, etc. owing to the stereospecific interactions between various nanosystems and enantiomers. As the molecular structure of G itself is achiral introducing chirality in G by simple attachment of a functional group (a chiral ligand) on the G nanosheet may result in more diverse applications. Herein, we demonstrate direct liquid phase exfoliation and chiral induction in G nanosheets abbreviated as L-graphene and D-graphene in the presence of chiral L-tyrosine and D-tyrosine and by applying high-temperature sonication. The obtained exfoliated nanosheets demonstrated stable chirality confirmed by circular dichroism. Fourier transform infrared (FTIR) spectra, Raman spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and differential scanning calorimetry (DSC) showed functional, structural, morphological, surface, and thermal characteristics of L-graphene and D-graphene. The hemo-compatibility of these chiral graphenes was evaluated for the very first time utilizing human red blood cells. Lastly, for the very first time, an attempt was made to explore enantiomeric binding between chiral L-graphene and D-graphene with microRNA (miR-205) and their possibility towards chirality-mediated gene delivery in prostate cancerous cells

    Research Notes : India : Intra-plant variation in mutation frequency and spectrum in soybean

    Get PDF
    Upadhyaya (1976) observed that the number of mutant plants was exceedingly low in segregating M2 progenies in soybean. In M3 progenies of normal M2 plants, the number of segregating progenies was also not very high as compared with nonsegregating progenies. But, all the segregating progenies in MJ generation showed an excellent fit to the 3 normal:l mutant ratio, indicating mutant as a monogenic recessive trait. Such a situation was encountered in many cases of albino, yellow leaf, crinkled leaf, and sterile mutants

    Comparative Analysis of Super-Kamiokande and SNO Solar-Neutrino Data and the Photospheric Magnetic Field

    Get PDF
    We analyze Super-Kamiokande, SNO, and photospheric magnetic-field data for the common time interval, namely the SNO D2O phase. Concerning rotational modulation, the magnetic-field power spectrum shows the strongest peaks at the second and sixth harmonics of the solar synodic rotation frequency [3 nu(rot) and 7 nu(rot)]. The restricted Super-Kamiokande dataset shows strong modulation at the second harmonic. The SNO D2O dataset shows weak modulation at that frequency, but strong modulation in the sixth-harmonic frequency band. We estimate the significance level of the correspondence of the Super-Kamiokande second-harmonic peak with the corresponding magnetic-field peak to be 0.0004, and the significance level of the correspondence of the SNO D2O sixth-harmonic peak with the corresponding magnetic-field peak to be 0.009. By estimating the amplitude of the modulation of the solar neutrino flux at the second harmonic from the restricted Super-Kamiokande dataset, we find that the weak power at that frequency in the SNO D2O power spectrum is not particularly surprising. Concerning 9.43 yr-1, we find no peak at this frequency in the power spectrum formed from the restricted Super-Kamiokande dataset, so it is no surprise that this peak does not show up in the SNO D2O dataset, either.Comment: 32 pages, 8 tables, 16 figure

    The Parallel Persistent Memory Model

    Full text link
    We consider a parallel computational model that consists of PP processors, each with a fast local ephemeral memory of limited size, and sharing a large persistent memory. The model allows for each processor to fault with bounded probability, and possibly restart. On faulting all processor state and local ephemeral memory are lost, but the persistent memory remains. This model is motivated by upcoming non-volatile memories that are as fast as existing random access memory, are accessible at the granularity of cache lines, and have the capability of surviving power outages. It is further motivated by the observation that in large parallel systems, failure of processors and their caches is not unusual. Within the model we develop a framework for developing locality efficient parallel algorithms that are resilient to failures. There are several challenges, including the need to recover from failures, the desire to do this in an asynchronous setting (i.e., not blocking other processors when one fails), and the need for synchronization primitives that are robust to failures. We describe approaches to solve these challenges based on breaking computations into what we call capsules, which have certain properties, and developing a work-stealing scheduler that functions properly within the context of failures. The scheduler guarantees a time bound of O(W/PA+D(P/PA)log1/fW)O(W/P_A + D(P/P_A) \lceil\log_{1/f} W\rceil) in expectation, where WW and DD are the work and depth of the computation (in the absence of failures), PAP_A is the average number of processors available during the computation, and f1/2f \le 1/2 is the probability that a capsule fails. Within the model and using the proposed methods, we develop efficient algorithms for parallel sorting and other primitives.Comment: This paper is the full version of a paper at SPAA 2018 with the same nam
    corecore