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Corneal Lymphatics: Role in Ocular Inflammation as Inducer and 
Responder of Adaptive Immunity
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Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Harvard Medical 
School, Boston, Massachusetts 02114, USA

Abstract

The normal cornea is devoid of lymphatic and blood vessels, thus suppressing both the afferent 

(lymphatic) and efferent (vascular) arms of the immune response–contributing to its ‘immune 

privilege’. Inflammation, however, negates this unique ‘immune’ and ‘angiogenic’ privilege of the 

cornea. Abnormal blood vessel growth from pre-existing limbal vessels into the cornea has been 

studied for many years, but it is only recently that the significance of new lymphatic vessels 

(lymphangiogenesis) in ocular inflammatory diseases has been demonstrated. Whereas blood 

vessels in inflamed ocular surface provide a route of entry for immune effector cells to the cornea, 

lymphatics facilitate the exit of antigen-presenting cells and antigenic material from the cornea to 

regional lymph nodes, thus promoting induction of adaptive immune response. This review 

summarizes the current evidence for lymphangiogenesis in the cornea, and describes its molecular 

mediators; and discusses the interface between corneal lymphangiogenesis and adaptive immunity. 

Furthermore, the pathophysiologic implications of corneal lymphangiogenesis in the setting of 

allo- and autoimmune-mediated corneal inflammation are discussed.
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Introduction

The lymphatic vasculature plays an important role in the maintenance of fluid homeostasis, 

regulation of lipids, and trafficking of antigen-presenting cells from peripheral tissue to 

regional draining lymph nodes. In contrast to other tissues, the cornea is unique in that it 

actively maintains an avascular and alymphatic state, which limits antigen-presentation and 

leads to its status as an immune privileged tissue. However, the cornea’s immune privilege 
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can be disrupted, and blood as well as lymphatic vessels can develop in a number of 

pathologic conditions [1].

The cornea is circumferentially surrounded by lymphatic vessels located in the limbus [2]. 

These vessels connect to the conjunctival lymphatic network but, under homeostatic 

conditions, do not enter the cornea (Figure 1A). Under inflammatory conditions, however, 

these lymphatic vessels can give rise to new lymphatics, which do extend into the cornea 

(Figure 1B) [3]. Blood and lymphatic vessel formation, as in other tissues, is primarily 

mediated by the vascular endothelial growth factor (VEGF) family, with lymphatic vessel 

formation specifically coordinated by the interactions of VEGF Receptor-3 with its ligands, 

VEGF-C and VEGF-D [4]. Activation of VEGFR-3 by VEGF-C leads to phosphorylation of 

protein kinase B (AKT) and extracellular signal-regulated kinase (ERK), which in turn leads 

to lymphatic endothelial cell proliferation and lymphatic tube formation [5,6]. In addition to 

VEGF-C/D signaling through VEGFR-3, additional factors known to promote 

lymphangiogenesis include angiopoietin-2 and integrin alpha 5. Studies inhibiting both type 

of factors have demonstrated efficacy in preferentially blocking corneal lymphangiogenesis 

versus hemangiogenesis [7–9].

Corneal lymphatic vessels may also be able to develop de novo, independent of limbal 

lymphatics. Under inflammatory conditions CD11b+ macrophages in the corneal stroma 

have been observed to express the ‘classic’ lymphangiogenic markers Lymphatic Vessel 

Endothelial Receptor 1 (LYVE-1) and Prospero homeobox 1 (PROX-1). Interestingly, in 

vitro, macrophages are able to aggregate into tube-like structures, which express the 

lymphatic markers LYVE-1 and podoplanin, suggesting a direct contribution of these cells 

to lymphatic vessels. Further, macrophages contribute to the maintenance of corneal 

lymphatics in inflammation [10]. The majority of the lymphatic vasculature develops from 

homeobox gene PROX-1–expressing cells of the venous circulation during embryogenesis, 

which then undergo further remodeling [11]. PROX-1 expression is critical for the initial 

formation of lymphatic endothelial cells from venous cells [12]. Lymphatic endothelial cells 

interlock in two distinct patterns to form lymphatic capillaries in peripheral tissue. 

Lymphatic endothelial cells in initial lymphatics are connected by discontinuous adhesion 

proteins called “buttons”, which are able to create openings through which fluid and 

immune cells can enter. Lymphatic endothelial cells in collecting lymphatics are 

continuously attached in a “zipper”-like fashion [13,14].

In this review we aim to (i) describe the evidence of corneal lymphangiogenesis, (ii) outline 

its molecular mediators, and the interaction between corneal lymphangiogenesis and 

adaptive immunity, and (iii) discuss the pathophysiologic implications of corneal 

lymphangiogenesis in the setting of allo- and autoimmune-mediated corneal inflammation.

Corneal Angiogenic Privilege

A pristine visual axis is of the utmost importance to preserve proper visual function [15]. 

Accordingly, under homeostatic conditions, the cornea is both alymphatic and avascular. 

The importance of this “angiogenic privilege” is emphasized by the presence of multiple 

mechanisms that serve to maintain it.
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One mechanism that helps to keep the cornea alymphatic and avascular is through 

controlling the expression and availability of VEGF receptors and ligands, which is 

accomplished through the expression of several anti-angiogenic factors. The corneal 

epithelium expresses a soluble form of VEGFR-3, which acts as a decoy receptor and binds 

VEGF-C and VEGF-D [5,16], as well as soluble VEGFR-2, which prevents lymphatic 

invasion of the central cornea [17]. The cornea also expresses thrombospondin-1, which is 

known to regulate the production of VEGF-C by monocytes/macrophages through binding 

of CD36 [18]. The corneal epithelium additionally expresses soluble VEGFR1, which limits 

hemangiogenesis by acting as a decoy receptor for VEGF-A [19]. Other anti-angiogenic 

factors known to be expressed by the cornea include Pigment epithelium-derived factor 

(PEDF), a potent inhibitor expressed by the corneal epithelium [20,21] as well as 

angiostatin, which is also expressed by the corneal epithelium and is capable of binding 

multiple targets on vascular endothelial cells to inhibit proliferation and migration [22–26]. 

The corneal epithelium also expresses endostatin, which can inhibit angiogenesis by directly 

inhibiting vascular endothelial cell proliferation or by blocking VEGFR-2 signaling [27,28].

The avascular/alymphatic (angiogenic privilege) state of the cornea is intricately linked to its 

immune privileged state, which is maintained among other factors by the expression of a 

range of immunoregulatory factors [29–31]. These anti-inflammatory factors in turn 

contribute to immune and angiogenic privilege by regulating the functional interface 

between immune and vascular endothelial cells. For example, Transforming growth factor 

(TGF)-β2 regulates dendritic cell maturation [32] and the corneal epithelium expresses Fas 

ligand (FasL), which induces apoptosis of FAS-expressing immune cells [33]. Fas is also 

expressed by neovessels arising under inflammatory conditions, but not quiescent vessels, 

meaning that Fas/FasL interactions also have a direct anti-angiogenic effect [34]. 

Programmed death-ligand 1 (PDL-1) is another regulatory molecule expressed constitutively 

at high levels by the corneal epithelium that downregulates T cell responses and induces 

immune cell apoptosis [32, 35]. PDL-1 is also expressed by vascular endothelial cells and its 

inhibition leads to a significant increase in cell proliferation [36].

Additional factors contributing to corneal immune privilege include the general anti-

inflammatory proteins Interleukin (IL)-10 [37] and IL-1Ra. IL-1Ra inhibits pro-

inflammatory IL-1α and IL-1 β by competitively binding IL-1R without inducing signaling 

[38]. By down-regulating inflammation these factors preserve expression of the corneal 

epithelium derived anti-angiogenic factors and prevent the recruitment and activation of 

immune cells such as neutrophils, macrophages, and T cells, all of which promote heme- 

and lymphangiogenesis by secreting VEGF ligands [39–42].

Mechanisms of Corneal Lymphangiogenesis

Loss of corneal angiogenic privilege is due to a deficit in the cornea’s anti-angiogenic 

factors relative to pro-angiogenic factors, and is evident in a number of pathologic 

conditions, including trauma, infection, corneal transplant rejection, and dry eye disease 

[1,43]. Although the inciting injury or disease may vary, the formation of lymphatic vessels 

allows the host to accomplish the same task, namely controlling tissue injury and 

inflammation by facilitating antigen-presenting cell trafficking to regional lymphoid tissues 
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where T cell responses can be orchestrated. In contrast, lymphangiogenesis may also 

directly contribute to the resolution of inflammation by clearing cells and debris generated 

as a result of inflammation-induced tissue injury [44,45]. Indeed, in some situations anti-

lymphangiogenic therapy has been observed to actually delay the resolution of inflammation 

[46].

Injury to the cornea, including mechanical trauma and chemical burn, generates a non-

specific inflammatory response driven by the innate immune system. As part of this 

response, damaged corneal tissue produces pro-inflammatory factors, including Tumor 

necrosis factor (TNF)-α, IL-1, chemokines such as CC chemokine ligand (CCL) 2 and 

CCL20, and integrins such as Intercellular Adhesion Molecule 1 (ICAM-1) [40,47–49]. 

These factors not only damage the ocular surface, but also facilitate the recruitment of innate 

immune cells including neutrophils and macrophages, which promote lymphangiogenesis 

through production of VEGF-C and VEGF-D [39,42,50].

Pathologic blood and lymphatic vessels are also commonly seen in infectious processes such 

as herpes simplex viral (HSV) keratitis. Lymphatic vessel formation in HSV infected 

corneas is stimulated by the contributions of the general pro-inflammatory factors described 

above, as well as by the virus itself, which stimulates corneal epithelial cells to drive 

lymphangiogenesis through VEGF-A/VEGFR-2 signaling [51]. In addition, CD8+ T cells 

generated as part of the adaptive immune response to HSV also contribute to 

lymphangiogenesis through their production of VEGF-C [52].

Along with infection, corneal transplant rejection and dry eye disease are two other common 

conditions in which lymphangiogenesis is present and plays an important role. Corneal 

transplantation is the most common form of solid tissue transplantation, with over 100,000 

transplants performed globally each year (as published by the Eye Bank Association of 

America-EBAA). Dry eye disease is a chronic, immunoinflammatory disorder of the ocular 

surface, which affects millions of individuals [53,54]. In both corneal transplantation and 

dry eye disease, lymphangiogenesis permits APCs to reach the draining lymph nodes where 

they then prime naïve T cells and induce a T-helper response. These T cells then traffic back 

to the cornea where they mediate graft rejection or drive the chronic ocular surface 

inflammation seen in dry eye disease.

Corneal Lymphatics as Inducers of Adaptive Immunity

One of the major functions of the lymphatic vasculature in all tissues is to facilitate adaptive 

immunity. Lymphatic vessels are crucial to the host’s ability to respond to infectious agents 

and target antigens, as they facilitate the trafficking of antigen-presenting cells (APCs) to 

draining lymph nodes where they present antigen to naïve T cells. In the case of most 

microbial infections, induction of an adaptive immune response is crucial to the host’s 

ability to defend itself. However, in some cases, adaptive immunity may not be as 

beneficial, as is seen in autoimmune conditions such as multiple sclerosis, rheumatoid 

arthritis, and dry eye disease [53,55,56]. In these conditions, an adaptive immune response is 

inappropriately mounted, leading to destruction of normal tissue and chronic inflammation. 

The adaptive immune response can be similarly detrimental in the setting of organ 
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transplantation, as the host immune system sees transplanted tissue as foreign, leading to 

induction of allo-reactive T cells and subsequent rejection of the transplant.

The alloimmune response can be visualized as consisting of afferent and efferent arms 

(Figure 2). Lymphatic vessels mediate the afferent arm of the immune system by facilitating 

the migration of APCs and alloantigens to the draining lymph nodes, where they prime 

alloreactive effector T cells, which then migrate back to the graft via blood vessels (the 

efferent arm). The afferent arm begins with functional changes in lymphatic endothelial cells 

and APCs in response to inflammatory cytokines. Due to inflammation immature APCs 

adopt a mature phenotype, which includes upregulation of major histocompatibility complex 

II and costimulatory molecules [57], as well as downregulation of the chemokine receptors 

CC chemokine receptor (CCR)1, CCR2, CCR5, and chemokine (C-X-C motif) receptor 1 

(CXCR1) as well as upregulation of CCR7 [58,59]. These APCs then enter lymphatic 

capillaries, a process that relies on CCR7+ APCs following a CCL21 gradient, as well as the 

interplay of ICAM-1 and vascular cell adhesion molecule 1 (VCAM-1) and their ligands 

[60–63]. Upon reaching the parafollicular cortex, APCs then present antigen to naïve T 

cells, which differentiate into CD4+ T cells, the predominant effector cells in corneal 

transplantation [64,65].

The importance of lymphatic vessels in alloimmunity is illustrated by the high rate of 

rejection seen in those transplants performed in corneal beds with pre-existing lymphatics, 

so called ‘high-risk’ hosts [66–68]. In these hosts, with a luxurious supply of lymphatics in 

the recipient graft bed, APC trafficking and allo-sensitization is significantly increased 

compared to low-risk hosts with an avascular cornea, and can begin almost immediately; 

APCs are detectable in the draining lymph nodes at 4 hours after transplantation [69], and 

peak at 24 hours post transplantation [70]. Further, the effector T cell response is 

significantly increased in ‘high-risk’ hosts up to 72 hours post transplantation [71]. Several 

anti-lymphangiogenic therapies have shown promise in improving corneal transplant 

survival, including the neutralization of VEGF-C [72] and using a VEGFR-3 trap [73]. Anti-

lymphatic therapy has also been used to improve high-risk corneal transplant outcomes [67]. 

In this study, high-risk host beds were treated with anti-lymphatics prior to transplantation in 

order to reduce lymphatic vessel density. These studies further highlight the importance of 

lymphangiogenesis in alloimmunity, although the utility of anti-lymphatic therapy in the 

clinical setting remains to be seen.

Corneal Lymphatics as Responders of Adaptive Immunity

The formation of new lymphatic vessels is a dynamic process during embryogenesis but is 

relatively rare and selectively regulated in adulthood. Inflammation is the main physiologic 

event that evokes formation of new lymphatic vessels in adulthood [74,75]. It is generally 

recognized that early innate immune responses play a crucial role in the induction of 

lymphangiogenesis in most corneal inflammatory disorders, including transplant rejection 

and infection, which in turn facilitate migration of APCs toward the draining lymphoid 

tissues to prime naïve T cells leading to an adaptive immune response. Innate inflammation 

triggers lymphangiogenesis via early surge of pro-inflammatory molecules that orchestrates 

the inflammatory response, which in turn upregulates expression of vascular growth factors 
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and cytokines promoting survival, migration, and proliferation of lymphatic endothelial cells 

[76–78]. However, recent studies have demonstrated that not only innate inflammatory 

responses, but also late adaptive immune responses, can play a critical role in the induction 

of lymphangiogenesis in chronic inflammatory conditions such as malignancy and 

autoimmune disorders [79,80].

In a model of T-helper-17 cell (Th17)-dominant autoimmune dry eye disease, we have 

recently reported the selective occurrence of corneal lymphangiogenesis and significantly 

elevated homing of mature APCs to the lymphoid tissues where they induce autoreactive 

IL17+CD4+T cell (Th17) responses [81,82]. Dry eye disease, which is the most common 

ophthalmic pathological condition, is a complex, multifactorial, immune-mediated disorder 

in which chronic ocular surface inflammation is sustained by ongoing activation and 

infiltration of pathogenic immune cells, primarily Th17 cells [83]. We have demonstrated 

that lymphangiogenesis, without concurrent growth of blood vessels (hemangiogenesis), 

occurs in the cornea of mice with dry eyes [81]. Interestingly, along with the progression of 

the disease, these lymphatics not only grow toward the central cornea, but also show 

significantly increased caliber compared to those restricted to the limbal areas of normal 

corneas (Figure 3). This is in contrast to other robust models of corneal inflammation such 

as transplantation or infection where there is either parallel outgrowth of blood and 

lymphatic vessels, or the blood vessels are precedent over the lymphatics [66–68]. New 

ingrowth of lymphatics in dry eye corneas not only provides a link between chronic ocular 

surface inflammation and the generation of T cell mediated immunity in the lymphoid 

compartment, but also offers an example of how lymphangiogenesis and hemangiogenesis 

can be ‘naturally’ dissociated in a pathological state.

Our studies of the cornea in dry eyes have revealed that these corneas significantly up-

regulate pro-lymphangiogenic VEGF-C and VEGF-D along with their receptor VEGFR-3, 

suggesting that the low-grade chronic inflammation seen in dry eyes is selectively conducive 

for lymphangiogenesis. Th17 cells, in addition to their proinflammatory functions, have 

been recognized as potent inducers of angiogenesis in autoimmune diseases and 

malignancies [79,80], but little was known about their function as inducers of lymphatic 

growth. In dry eye disease Th17 cell-secreted IL-17 promotes a selective ingrowth of new 

corneal lymphatic vessels (Figure 4) by inducing increased expression of pro-

lymphangiogenic VEGF-D and VEGF-C by epithelial, stromal and resident immune cells in 

the cornea that can induce proliferation of lymphatic endothelial cells [80]. Importantly, we 

showed that in vivo blockade of IL-17 in dry eye disease significantly reduces corneal 

lymphangiogenesis and the progression of clinical disease. Taken together, these findings 

suggest that in addition to causing corneal damage, Th17 cell-secreted IL-17 promotes the 

growth of corneal lymphatic vessels in autoimmune dry eye disease. Despite the fact that 

innate immunity plays a crucial role in inducing lymphangiogenesis, ingrowth of lymphatic 

vessels in dry eye corneas indicate a new adaptive immune Th17/IL17-mediated mechanism 

in inducing lymphangiogenesis.
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Conclusions

The absence of lymphatic vessels contributes significantly to the immune privileged state of 

the cornea by blunting ocular antigen and APC trafficking to the draining lymph nodes, and 

thus the induction of adaptive immunity. Injury and inflammation, however, can induce 

lymphangiogenesis and result in loss of immune privilege, allowing immune responses in 

the cornea. Complex cellular and molecular mechanisms regulate lymphangiogenesis in 

diverse corneal inflammatory conditions, and only recently, data provide evidence for 

important functional interactions between corneal lymphangiogenesis and the adaptive 

immune response in autoimmunity. In most corneal inflammatory diseases 

lymphangiogenesis is closely linked to hemangiogenesis—together they serve as major 

routes of induction and expression of adaptive immunity such as alloimmune response, 

which is critical in transplant rejection. However, in chronic autoimmune ocular surface 

inflammation such as dry eye disease, there is an exclusive growth of corneal lymphatics 

(without blood vessels), which primarily occurs in response to a Th17-mediated 

autoimmune response. Last, the cornea serves as an ideal site for angiogenic studies (as well 

as vascular endothelial cell-immune cell interactions) due to its accessible location, 

transparent nature, and its blood vessel- and lymphatic-free character. Understanding the 

mechanisms underlying corneal lymphangiogenesis will likely aid in developing more 

specific therapeutic strategies of broader clinical conditions beyond the treatment of corneal 

inflammatory conditions alone.
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Figure 1. 
Angiogenic privilege of cornea. [A] Normal cornea is a blood and lymphatic vessel-free 

tissue. Vessels are restricted only to the periphery of the cornea (limbal area). [B] In 

response to inflammation, this “angiogenic” privilege of the cornea can be lost leading to the 

ingrowth of both blood and lymphatic vessels. Micrographs from a mouse corneal 

micropocket model of neovascularization show that pellets containing the inflammatory 

cytokine IL-1β robustly induce ingrowth of both new blood (CD31+LYVE1−) and lymphatic 

(LYVE1+CD31lo) vessels. (L: Limbus; P: Pellet).
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Figure 2. 
Function of lymphatic and blood vessels in corneal alloimmunity. Lymphatics (afferent arm 

of immune system) transport antigens and antigen-presenting cells (APCs) from the graft 

site to the draining lymph nodes, where T cells are primed and expanded. Alloreactive T 

cells return to the cornea via blood vessels (efferent arm) and mediate transplant rejection.
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Figure 3. 
Selective ingrowth of corneal lymphatic vessels in dry eye disease. Confocal micrographs 

showing corneal lymphangiogenesis in normal cornea and in dry eye corneas at days 6, 10, 

and 14 post-induction of dry eye in a mouse model of dry eye disease. The lymphatic vessels 

(LYVE1+CD31lo) increase both in area and caliber, and grow towards the cornea center 

with disease progression. The lymphatics are unaccompanied by blood vessels (CD31hi/

LYVE1−). (Lymphatics marked by arrows; C: Cornea; L: Limbus). Adapted from [81].

Chauhan et al. Page 14

J Clin Cell Immunol. Author manuscript; available in PMC 2015 January 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4. 
Mechanism of T-helper-17 (Th17) cell-mediated lymphangiogenesis. Th17 cell-secreted 

interleukin-17 (IL-17) induces lymphangiogenesis via a vascular endothelial growth factor 

(VEGF)-D/C–VEGFR-3 signaling pathway. In response to Th17-secreted IL-17, IL-17-

receptor-expressing cells such as epithelial and stromal cells directly upregulate expression 

of VEGF-D; whereas VEGF-C expression is upregulated via IL-17-induced IL-1β-mediated 

pathway. Both VEGF-D and VEGF-C bind to VEGFR-3 on lymphatic endothelial cells and 

promote proliferation and tube formation by lymphatic endothelial cells.
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