102 research outputs found

    High expression of CXCR4 may predict poor survival in resected pancreatic adenocarcinoma

    Get PDF
    Chemokines and their receptors are involved in tumourigenicity and clinicopathological significance of chemokines receptor expression in pancreatic adenocarcinoma (PA) is not fully understood. This study was conducted to determine patients' outcome according to the expressions of CXCR4, CXCR7 and HIF-1α after resection of PA. Immunohistochemistry for CXCR4, CXCR7 and HIF-1α expressions as well as cell proliferative index (Ki-67) was conducted in 71 resected (R0) PA and their 48 related lymph nodes (LN) using tissue microarray. CXCR4 and CXCR7 expressions were positively correlated to HIF-1α suggesting a potential role of HIF-1α in CXCR4 and CXCR7 transcription activation. Patients with CXCR4high tumour expression had shorter OS than those with low expression (median survival: 9.7 vs 43.2 months, P=0.0006), a higher risk of LN metastases and liver recurrence. In multivariate analysis, high CXCR4 expression, LN metastases and poorly differentiated tumour are independent negative prognosis factors. In a combining analysis, patients with CXCR4low/CXCR7low tumour had a significantly shorter DFS and OS than patients with a CXCR7high/CXCR4high tumour. CXCR4 in resected PA may represent a valuable prognostic factor as well as an attractive target for therapeutic purpose

    Selenium supplementation acting through the induction of thioredoxin reductase and glutathione peroxidase protects the human endothelial cell line EAhy926 from damage by lipid hydroperoxides

    Get PDF
    AbstractThe human endothelial cell line EAhy926 was used to determine the importance of selenium in preventing oxidative damage induced by tert-butyl hydroperoxide (tert-BuOOH) or oxidised low density lipoprotein (LDLox). In cells grown in a low selenium medium, tert-BuOOH and LDLox killed cells in a dose-dependent manner. At 555 mg/l LDLox or 300 μM tert-BuOOH, >80% of cells were killed after 20 h. No significant cell kill was achieved by these agents if cells were pre-incubated for 48 h with 40 nM sodium selenite, a concentration that maximally induced the activities of cytoplasmic glutathione peroxidase (cyGPX; 5.1-fold), phospholipid hydroperoxide glutathione peroxidase (PHGPX;1.9-fold) and thioredoxin reductase (TR; 3.1-fold). Selenium-deficient cells pre-treated with 1 μM gold thioglucose (GTG) (a concentration that inhibited 25% of TR activity but had no inhibitory effect on cyGPX or PHGPX activity) were significantly (P<0.05) more susceptible to tert-BuOOH toxicity (LC50 110 μM) than selenium-deficient cells (LC50 175 μM). This was also the case for LDLox. In contrast, cells pre-treated with 40 nM selenite prior to exposure to GTG were significantly more resistant to damage from tert-BuOOH and LDLox than Se-deficient cells. Treatment with GTG or selenite had no significant effect on intracellular total glutathione concentrations. These results suggest that selenium supplementation, acting through induction of TR and GPX, has the potential to protect the human endothelium from oxidative damage

    Ascorbic acid partly antagonizes resveratrol mediated heme oxygenase-1 but not paraoxonase-1 induction in cultured hepatocytes - role of the redox-regulated transcription factor Nrf2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Both resveratrol and vitamin C (ascorbic acid) are frequently used in complementary and alternative medicine. However, little is known about the underlying mechanisms for potential health benefits of resveratrol and its interactions with ascorbic acid.</p> <p>Methods</p> <p>The antioxidant enzymes heme oxygenase-1 and paraoxonase-1 were analysed for their mRNA and protein levels in HUH7 liver cells treated with 10 and 25 μmol/l resveratrol in the absence and presence of 100 and 1000 μmol/l ascorbic acid. Additionally the transactivation of the transcription factor Nrf2 and paraoxonase-1 were determined by reporter gene assays.</p> <p>Results</p> <p>Here, we demonstrate that resveratrol induces the antioxidant enzymes heme oxygenase-1 and paraoxonase-1 in cultured hepatocytes. Heme oxygenase-1 induction by resveratrol was accompanied by an increase in Nrf2 transactivation. Resveratrol mediated Nrf2 transactivation as well as heme oxygenase-1 induction were partly antagonized by 1000 μmol/l ascorbic acid.</p> <p>Conclusions</p> <p>Unlike heme oxygenase-1 (which is highly regulated by Nrf2) paraoxonase-1 (which exhibits fewer ARE/Nrf2 binding sites in its promoter) induction by resveratrol was not counteracted by ascorbic acid. Addition of resveratrol to the cell culture medium produced relatively low levels of hydrogen peroxide which may be a positive hormetic redox-signal for Nrf2 dependent gene expression thereby driving heme oxygenase-1 induction. However, high concentrations of ascorbic acid manifold increased hydrogen peroxide production in the cell culture medium which may be a stress signal thereby disrupting the Nrf2 signalling pathway.</p

    Graph Theoretical Model of a Sensorimotor Connectome in Zebrafish

    Get PDF
    Mapping the detailed connectivity patterns (connectomes) of neural circuits is a central goal of neuroscience. The best quantitative approach to analyzing connectome data is still unclear but graph theory has been used with success. We present a graph theoretical model of the posterior lateral line sensorimotor pathway in zebrafish. The model includes 2,616 neurons and 167,114 synaptic connections. Model neurons represent known cell types in zebrafish larvae, and connections were set stochastically following rules based on biological literature. Thus, our model is a uniquely detailed computational representation of a vertebrate connectome. The connectome has low overall connection density, with 2.45% of all possible connections, a value within the physiological range. We used graph theoretical tools to compare the zebrafish connectome graph to small-world, random and structured random graphs of the same size. For each type of graph, 100 randomly generated instantiations were considered. Degree distribution (the number of connections per neuron) varied more in the zebrafish graph than in same size graphs with less biological detail. There was high local clustering and a short average path length between nodes, implying a small-world structure similar to other neural connectomes and complex networks. The graph was found not to be scale-free, in agreement with some other neural connectomes. An experimental lesion was performed that targeted three model brain neurons, including the Mauthner neuron, known to control fast escape turns. The lesion decreased the number of short paths between sensory and motor neurons analogous to the behavioral effects of the same lesion in zebrafish. This model is expandable and can be used to organize and interpret a growing database of information on the zebrafish connectome

    ppk23-Dependent Chemosensory Functions Contribute to Courtship Behavior in Drosophila melanogaster

    Get PDF
    Insects utilize diverse families of ion channels to respond to environmental cues and control mating, feeding, and the response to threats. Although degenerin/epithelial sodium channels (DEG/ENaC) represent one of the largest families of ion channels in Drosophila melanogaster, the physiological functions of these proteins are still poorly understood. We found that the DEG/ENaC channel ppk23 is expressed in a subpopulation of sexually dimorphic gustatory-like chemosensory bristles that are distinct from those expressing feeding-related gustatory receptors. Disrupting ppk23 or inhibiting activity of ppk23-expressing neurons did not alter gustatory responses. Instead, blocking ppk23-positive neurons or mutating the ppk23 gene delayed the initiation and reduced the intensity of male courtship. Furthermore, mutations in ppk23 altered the behavioral response of males to the female-specific aphrodisiac pheromone 7(Z), 11(Z)-Heptacosadiene. Together, these data indicate that ppk23 and the cells expressing it play an important role in the peripheral sensory system that determines sexual behavior in Drosophila

    Dorsoventral Patterning in Hemichordates: Insights into Early Chordate Evolution

    Get PDF
    We have compared the dorsoventral development of hemichordates and chordates to deduce the organization of their common ancestor, and hence to identify the evolutionary modifications of the chordate body axis after the lineages split. In the hemichordate embryo, genes encoding bone morphogenetic proteins (Bmp) 2/4 and 5/8, as well as several genes for modulators of Bmp activity, are expressed in a thin stripe of ectoderm on one midline, historically called “dorsal.” On the opposite midline, the genes encoding Chordin and Anti-dorsalizing morphogenetic protein (Admp) are expressed. Thus, we find a Bmp-Chordin developmental axis preceding and underlying the anatomical dorsoventral axis of hemichordates, adding to the evidence from Drosophila and chordates that this axis may be at least as ancient as the first bilateral animals. Numerous genes encoding transcription factors and signaling ligands are expressed in the three germ layers of hemichordate embryos in distinct dorsoventral domains, such as pox neuro, pituitary homeobox, distalless, and tbx2/3 on the Bmp side and netrin, mnx, mox, and single-minded on the Chordin-Admp side. When we expose the embryo to excess Bmp protein, or when we deplete endogenous Bmp by small interfering RNA injections, these expression domains expand or contract, reflecting their activation or repression by Bmp, and the embryos develop as dorsalized or ventralized limit forms. Dorsoventral patterning is independent of anterior/posterior patterning, as in Drosophila but not chordates. Unlike both chordates and Drosophila, neural gene expression in hemichordates is not repressed by high Bmp levels, consistent with their development of a diffuse rather than centralized nervous system. We suggest that the common ancestor of hemichordates and chordates did not use its Bmp-Chordin axis to segregate epidermal and neural ectoderm but to pattern many other dorsoventral aspects of the germ layers, including neural cell fates within a diffuse nervous system. Accordingly, centralization was added in the chordate line by neural-epidermal segregation, mediated by the pre-existing Bmp-Chordin axis. Finally, since hemichordates develop the mouth on the non-Bmp side, like arthropods but opposite to chordates, the mouth and Bmp-Chordin axis may have rearranged in the chordate line, one relative to the other

    C-Terminal Region of EBNA-2 Determines the Superior Transforming Ability of Type 1 Epstein-Barr Virus by Enhanced Gene Regulation of LMP-1 and CXCR7

    Get PDF
    Type 1 Epstein-Barr virus (EBV) strains immortalize B lymphocytes in vitro much more efficiently than type 2 EBV, a difference previously mapped to the EBNA-2 locus. Here we demonstrate that the greater transforming activity of type 1 EBV correlates with a stronger and more rapid induction of the viral oncogene LMP-1 and the cell gene CXCR7 (which are both required for proliferation of EBV-LCLs) during infection of primary B cells with recombinant viruses. Surprisingly, although the major sequence differences between type 1 and type 2 EBNA-2 lie in N-terminal parts of the protein, the superior ability of type 1 EBNA-2 to induce proliferation of EBV-infected lymphoblasts is mostly determined by the C-terminus of EBNA-2. Substitution of the C-terminus of type 1 EBNA-2 into the type 2 protein is sufficient to confer a type 1 growth phenotype and type 1 expression levels of LMP-1 and CXCR7 in an EREB2.5 cell growth assay. Within this region, the RG, CR7 and TAD domains are the minimum type 1 sequences required. Sequencing the C-terminus of EBNA-2 from additional EBV isolates showed high sequence identity within type 1 isolates or within type 2 isolates, indicating that the functional differences mapped are typical of EBV type sequences. The results indicate that the C-terminus of EBNA-2 accounts for the greater ability of type 1 EBV to promote B cell proliferation, through mechanisms that include higher induction of genes (LMP-1 and CXCR7) required for proliferation and survival of EBV-LCLs
    corecore