36 research outputs found

    Moving people to deliver services : how can the WTO help?

    Get PDF
    The previous General Agreement on Trade in Services (GATS) negotiations produced little liberalization of the movement of individual service providers (mode 4), and the potentially large global gains from suchmovement remain unrealized. In the current negotiations, as part of the Doha Development Agenda, developing countries are seeking greater openness in their area of comparative advantage: the movement of providers unrelated to commercial presence abroad. At the same time, many multinational firms would like easier intra-corporate movement of their personnel. We describe how this coincidence of interest could be harnessed to deliver greater openness at least for skilled service providers.Environmental Economics&Policies,Health Monitoring&Evaluation,Decentralization,Public Health Promotion,Banks&Banking Reform,Trade and Services,Environmental Economics&Policies,Health Monitoring&Evaluation,Governance Indicators,Banks&Banking Reform

    Community acquired urinary tract infection in pediatric age-group with changing trends of antibiotic resistance pattern over 3 years: a clinico-epidemiological study

    Get PDF
    Background: Assessment of the antimicrobial sensitivity pattern in urinary isolates of the children suffering from urinary tract infection (UTI) and evaluation of the recent trends of multi-drug resistance in the isolates. The aim was to find out the antibiotics sensitivity of the organisms isolated from the urine samples of pediatric age-group with emphasis on their resistance pattern.Methods: A clinico-epidemiological study comprising of 304 specimens of urine were collected among all the children with UTI below 12 years of age, attending pediatric outpatient department of a tertiary care teaching hospital in eastern India wet mount microscopy and semi quantitative culture were done to diagnose UTI. Organisms isolated were identified by standard biochemical tests, and antibiogram studies were done by standard Kirby-Bauer disc diffusion test statistical analysis, Microsoft excel and SPSS were used for analysis of data.Results: Aminoglycosides had wider sensitivity pattern toward most of the uropathogens whereas tetracyclines and co-amoxyclav in particular were resistant for most of the organisms. Among all the organisms, Pseudomonas and Enterococcus species showed higher resistance pattern toward the conventional antimicrobials.Conclusions: The changing trends in the anti-biograms of several Gram-positive and Gram-negative microorganisms in UTI demands reconsideration with respect to rational drug use in the pediatric age group

    Cross-point architecture for spin transfer torque magnetic random access memory

    Full text link
    Spin transfer torque magnetic random access memory (STT-MRAM) is considered as one of the most promising candidates to build up a true universal memory thanks to its fast write/read speed, infinite endurance and non-volatility. However the conventional access architecture based on 1 transistor + 1 memory cell limits its storage density as the selection transistor should be large enough to ensure the write current higher than the critical current for the STT operation. This paper describes a design of cross-point architecture for STT-MRAM. The mean area per word corresponds to only two transistors, which are shared by a number of bits (e.g. 64). This leads to significant improvement of data density (e.g. 1.75 F2/bit). Special techniques are also presented to address the sneak currents and low speed issues of conventional cross-point architecture, which are difficult to surmount and few efficient design solutions have been reported in the literature. By using a STT-MRAM SPICE model including precise experimental parameters and STMicroelectronics 65 nm technology, some chip characteristic results such as cell area, data access speed and power have been calculated or simulated to demonstrate the expected performances of this new memory architecture

    Primitive Sca-1 Positive Bone Marrow HSC in Mouse Model of Aplastic Anemia: A Comparative Study through Flowcytometric Analysis and Scanning Electron Microscopy

    Get PDF
    Self-renewing Hematopoietic Stem Cells (HSCs) are responsible for reconstitution of all blood cell lineages. Sca-1 is the “stem cell antigen” marker used to identify the primitive murine HSC population, the expression of which decreases upon differentiation to other mature cell types. Sca-1+ HSCs maintain the bone marrow stem cell pool throughout the life. Aplastic anemia is a disease considered to involve primary stem cell deficiency and is characterized by severe pancytopenia and a decline in healthy blood cell generation system. Studies conducted in our laboratory revealed that the primitive Sca-1+ BM-HSCs (bone marrow hematopoietic stem cell) are significantly affected in experimental Aplastic animals pretreated with chemotherapeutic drugs (Busulfan and Cyclophosphamide) and there is increased Caspase-3 activity with consecutive high Annexin-V positivity leading to premature apoptosis in the bone marrow hematopoietic stem cell population in Aplastic condition. The Sca-1bright, that is, “more primitive” BM-HSC population was more affected than the “less primitive” BM-HSC Sca-1dim  population. The decreased cell population and the receptor expression were directly associated with an empty and deranged marrow microenvironment, which is evident from scanning electron microscopy (SEM). The above experimental evidences hint toward the manipulation of receptor expression for the benefit of cytotherapy by primitive stem cell population in Aplastic anemia cases

    Alteration in Marrow Stromal Microenvironment and Apoptosis Mechanisms Involved in Aplastic Anemia: An Animal Model to Study the Possible Disease Pathology

    Get PDF
    Aplastic anemia (AA) is a heterogeneous disorder of bone marrow failure syndrome. Suggested mechanisms include a primary stem cell deficiency or defect, a secondary stem cell defect due to abnormal regulation between cell death and differentiation, or a deficient microenvironment. In this study, we have tried to investigate the alterations in hematopoietic microenvironment and underlying mechanisms involved in such alterations in an animal model of drug induced AA. We presented the results of studying long term marrow culture, marrow ultra-structure, marrow adherent and hematopoietic progenitor cell colony formation, flowcytometric analysis of marrow stem and stromal progenitor populations and apoptosis mechanism involved in aplastic anemia. The AA marrow showed impairment in cellular proliferation and maturation and failed to generate a functional stromal microenvironment even after 19 days of culture. Ultra-structural analysis showed a degenerated and deformed marrow cellular association in AA. Colony forming units (CFUs) were also severely reduced in AA. Significantly decreased marrow stem and stromal progenitor population with subsequently increased expression levels of both the extracellular and intracellular apoptosis inducer markers in the AA marrow cells essentially pointed towards the defective hematopoiesis; moreover, a deficient and apoptotic microenvironment and the microenvironmental components might have played the important role in the possible pathogenesis of AA

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Architectures des FPGAs Asynchrones pour les Applications Cryptographiques

    No full text
    Cryptography is a mean to defend against potential attackers, notably to protect confidentiality, integrity or secure authentication, whereas cryptanalysis is about the challenge to retrieve hidden information. No mathematical cryptanalysis method can decrypt modern cryptographic algorithms such as AES, DES. But the leak of information related to the workings of these machines, or manipulation of these machines to find the secret key has become a powerful means of cryptanalysis. These attacks are known as "Side-Channel Attacks". This thesis attempts to find answers to the following questions: * Is there an architecture whose information leakage does not allow the attacker to recover the key faster than the case where there is no leakage? * To what extent are this leakage is tolerable, and how can we maximize the use of these machines without compromising their secret? * What are the metrics to determine the vulnerability of electronic circuits facing a multitude of ways to attack? Recently numerous researchers have asked these questions for the various categories of electronic circuits. In this thesis we restrict our research space to FPGAs and Asynchronous Circuits. The main advantage of FPGAs is their reconfigurability, which can be used to adapt the algorithm against an attack. Asynchronous circuits have good properties such as tolerance to fault, the decorrelation of power consumption and computation, which are useful against Side-Channel Attacks.La cryptologie est un moyen de protéger la confidentialité, d'assurer l'intégrité, ou d'authentifier un système, tandis que la cryptanalyse est le moyen de retrouver l'information secrète. Les algorithmes cryptographiques modernes tels que AES ou DES sont impossibles à attaquer au niveau mathématique. La fuite d'information liée aux fonctionnements de ces machines est devenue un moyen puissant de cryptanalyse pour retrouver la clé secrète. Ces attaques sont connues sous le nom d'attaques par canaux cachés. Ce travail de thèse tente de trouver une réponse aux questions suivantes : * Existe t'il une architecture dont la fuite d'information ne permet pas à l'attaquant de retrouver la clé plus vite que par la cryptanalyse classique ? * Jusqu'à quel point ces fuites sont-elles tolérables, et comment peut-on maximiser l'utilisation de ces machines sans compromettre leur secret ? * Quelles sont les métriques pour déterminer la vulnérabilité des circuits électroniques face à une multitude de méthodes d'attaques ? Récemment d'innombrables chercheurs ont posé ces questions pour les différentes catégories de circuits électroniques. Dans ce travail de thèse nous restreignons notre espace de recherche parmi les circuits de type "FPGA" et de type "asynchrone". L'atout principal des circuits FPGA est leur reconfigurabilité, qui peut être utilisée pour modifier l'implémentation de l'algorithme face à une attaque. Les circuits asynchrones ont de bonnes propriétés telles que la tolérance aux fautes, la décorrélation de la consommation avec le calcul, qui permettent de réduire la portée des attaques par canaux cachés
    corecore