15 research outputs found

    Investigation of vibration’s effect on driver in optimal motion cueing algorithm

    Get PDF
    The increased sensation error between the surroundings and the driver is a major problem in driving simulators, resulting in unrealistic motion cues. Intelligent control schemes have to be developed to provide realistic motion cues to the driver. The driver’s body model incorporates the effects of vibrations on the driver’s health, comfort, perception, and motion sickness, and most of the current research on motion cueing has not considered these factors. This article proposes a novel optimal motion cueing algorithm that utilizes the driver’s body model in conjunction with the driver’s perception model to minimize the sensation error. Moreover, this article employs H1 control in place of the linear quadratic regulator to optimize the quadratic cost function of sensation error. As compared to state of the art, we achieve decreased sensation error in terms of small root-mean-square difference (70%, 61%, and 84% decrease in case of longitudinal acceleration, lateral acceleration, and yaw velocity, respectively) and improved coefficient of cross-correlation (3% and 1% increase in case of longitudinal and lateral acceleration, respectively)

    Concentrations and patterns of organochlorines (OCs) in various fish species from the Indus River, Pakistan:a human health risk assessment

    No full text
    Abstract The present study was conducted to reveal the concentrations and patterns of organochlorines [i.e., organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs)] in freshwater fish species collected from four ecologically important sites of the Indus River i.e., Taunsa (TAU), Rahim Yar Khan (RYK), Guddu (GUD) and Sukkur (SUK). In the fish muscle tissues, concentrations of 15 OCPs (∑15OCPs) and 29 PCBs (∑29PCBs) varied between 1.93–61.9 and 0.81–44.2 ng/g wet weight (ww), respectively. Overall, the rank order of OCs was DDTs > PCBs > hexachlorocyclohexanes (HCHs) > chlordanes (CHLs). The patterns of PCBs showed maximum contribution of tri-CBs (59%). Ratios of individual HCH and DDT analytes contributing to the summed values indicated both recent and past use of these chemicals in the region, depending upon fish species. To assess the associated health risks, carcinogenic and non-carcinogenic risks were calculated through hazard ratios (HRs). For carcinogenic risk, HR was > 1 at both 50th and 95th percentile concentrations, suggesting that the daily exposure to OCPs and PCBs yields a lifetime cancer risk of 1 in a million. HR for non-cancerous risk was < 1 at both the percentiles, signifying no adverse effect by OCs exposure in native population

    E‑Waste Driven Pollution in Pakistan: The First Evidence of Environmental and Human Exposure to Flame Retardants (FRs) in Karachi City

    No full text
    Informal e-waste recycling activities have been shown to be a major emitter of organic flame retardants (FRs), contributing to both environmental and human exposure to laborers at e-waste recycling sites in some West African countries, as well as in China and India. The main objective of this study was to determine the levels of selected organic FRs in both air and soil samples collected from areas with intensive informal e-waste recycling activities in Karachi, Pakistan. Dechlorane Plus (DP) and “novel” brominated flame retardants (NBFRs) were often detected in high concentrations in soils, while phosphorus-based FRs (OPFRs) dominated atmospheric samples. Among individual substances and substance groups, decabromodiphenyl ether (BDE-209) (726 ng/g), decabromodiphenyl ethane (DBDPE) (551 ng/g), 1,2-bis­(2,4,6-tribromophenoxy) ethane (BTBPE) (362 ng/g), and triphenyl-phosphate (∑TPP) (296 ng/g) were found to be prevalent in soils, while OPFR congeners (5903–24986 ng/m<sup>3</sup>) were prevalent in air. The two major e-waste recycling areas (Shershah and Lyari) were highly contaminated with FRs, suggesting informal e-waste recycling activities as a major emission source of FRs in the environment in Karachi City. However, the hazards associated with exposure to PM<sub>2.5</sub> appear to exceed those attributed to exposure to selected FRs via inhalation and soil ingestion

    Legacy and emerging flame retardants (FRs) in the urban atmosphere of Pakistan: Diurnal variations, gas-particle partitioning and human health exposure

    No full text
    Atmospheric concentration of legacy (LFRs) and emerging flame retardants (EFRs) including 8 polybrominated diphenyl ethers (PBDEs), 6 novel brominated flame retardants (NBFRs), 2 dechlorane plus isomers (DP), and 8 chlorinated organophosphate flame retardants (OPFRs) were consecutively measured in eight major cities across Pakistan. A total of 96 samples (48 PM2.5 & 48 PUFs) were analyzed and the concentrations of ∑8PBDEs (gaseous+particulate) ranged between 40.8 and 288 pg/m3 with an average value of 172 pg/m3. ∑6NBFRs ranged between 12.0 and 35.0 pg/m3 with an average value of 22.5 pg/m3 while ∑8OPFRs ranged between 12,900–40,800 pg/m3 with an average of 24,700 pg/m3. Among the studied sites, Faisalabad city exhibited the higher concentrations of FRs among all cities which might be a consequence of textile mills and garment manufacturing industries. While analyzing the diurnal patterns, OPFRs depicted higher concentrations during night-time. The estimated risks of all groups of FRs from inhalation of ambient air were negligible for all the cities, according to USEPA guidelines. Nonetheless, our study is the first to report gaseous and particulate concentrations of FRs in air on a diurnal basis across major cities in Pakistan, offering insights into the atmospheric fate of these substances in urban areas in a sub-tropical region

    Organochlorine pesticides (OCPs) in the Indus River catchment area, Pakistan:status, soil–air exchange and black carbon mediated distribution

    No full text
    Organochlorine pesticides (OCPs) were investigated in passive air and soil samples from the catchment area of the Indus River, Pakistan. ∑15OCPs ranged between 0.68 and 13.47 ng g−1 in soil and 375.1–1975 pg mˉ3 in air. HCHs and DDTs were more prevalent in soil and air compartments. Composition profile indicated that β-HCH and p,p'-DDE were the dominant of all metabolites among HCHs and DDTs respectively. Moreover, fBC and fTOC were assessed and evaluated their potential role in the distribution status of OCPs. The fTOC and fBC ranged between 0.77 and 2.43 and 0.04–0.30% respectively in soil. Regression analysis showed the strong influence of fBC than fTOC on the distribution of OCPs in the Indus River catchment area soil. Equilibrium status was observed for β-HCH, δ-HCH, p,p'-DDD, o,p'-DDT, TC, HCB and Heptachlor with ff ranged between 0.3 and 0.59 while assessing the soil–air exchange of OCPs

    Significance of black carbon in the sediment–water partitioning of organochlorine pesticides (OCPs) in the Indus River, Pakistan

    No full text
    This study was conducted with the aim of assessing the levels and black carbon mediated sediment–water partitioning of organochlorine pesticides (OCPs) from the Indus River. ∑OCPs ranged between 52−285 ng L−1 and 5.6–29.2 ng g−1 in water and sediment samples respectively. However, the ranges of sedimentary fraction of total organic carbon (fTOC) and black carbon (fBC) were 0.82–2.26% and 0.04–0.5% respectively. Spatially, OCPs concentrations were higher at upstream sites as compared to downstream sites. Source diagnostic ratios indicated the technical usage of HCH (α-HCH/γ-HCH>4) and significant presence of DDT metabolites with fresh inputs into the Indus River as indicated by the ratios of (DDE+DDD)/∑DDTs (0.27–0.96). The partitioning of OCPs between the sediments and water can be explained by two carbon Freundlich adsorption model which included both organic carbon and black carbon pools as partitioning media

    The first exposure assessment of legacy and unrestricted brominated flame retardants in predatory birds of Pakistan

    No full text
    The exposure to legacy polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDDs) and unrestricted 1,2-bis (2,4,6-tribromophenoxy) ethane (BTBPE), bis (2-ethylhexyl)-2,3,4,5-tetrabromophthalate (BEH-TEBP) and 2-ethylhexyl-2,3,4,5-tetrabromo-benzoate (EH-TBB) was examined in tail feathers of 76 birds belonging to ten predatory species inhabiting Pakistan. In addition, different feather types of six individuals of Black kite (Milvus migrans) were compared for their brominated flame retardant (BFR) levels. Black kite was found to be the most contaminated species with a median (minimum-maximum) tail feather concentration of 2.4 (0.70-7.5) ng g(-1) dw for Sigma PBDEs, 1.5 (0.5-8.1) ng g(-1) dw for Sigma HBCDDs and 0.10 ( 0.05 for both). Similarly, no significant concentration differences were observed among different feather types (all P > 0.05) suggesting their similar exposure. While variables such as species, trophic guild and delta N-15 values were evaluated as major predictors for BFR accumulation in the studied species, we predict that combined effects of just mentioned factors may govern the intra- and interspecific differences in BFR contamination profiles. We urge for further investigation of BFR exposure and potential toxicological effects in predatory birds from Asia with a more extensive sample size per species and location
    corecore