221 research outputs found

    Aperture Synthesis Radar Imaging for Upper Atmospheric Research

    Get PDF

    Enhancing the spatiotemporal features of polar mesosphere summer echoes using coherent MIMO and radar imaging at MAARSY

    Get PDF
    Polar mesospheric summer echoes (PMSEs) are very strong radar echoes caused by the presence of ice particles, turbulence, and free electrons in the mesosphere over polar regions. For more than three decades, PMSEs have been used as natural tracers of the complicated atmospheric dynamics of this region. Neutral winds and turbulence parameters have been obtained assuming PMSE horizontal homogeneity on scales of tens of kilometers. Recent radar imaging studies have shown that PMSEs are not homogeneous on these scales and instead they are composed of kilometer-scale structures. In this paper, we present a technique that allows PMSE observations with unprecedented angular resolution (∌0.6). The technique combines the concept of coherent MIMO (Multiple Input Multiple Output) and two high-resolution imaging techniques, i.e., Capon and maximum entropy (MaxEnt). The resulting resolution is evaluated by imaging specular meteor echoes. The gain in angular resolution compared to previous approaches using SIMO (Single Input Multiple Output) and Capon is at least a factor of 2; i.e., at 85 km, we obtain a horizontal resolution of ∌900 m. The advantage of the new technique is evaluated with two events of 3-D PMSE structures showing: (1) horizontal wavelengths of 8-10 km and periods of 4-7 min, drifting with the background wind, and (2) horizontal wavelengths of 12-16 km and periods of 15-20 min, not drifting with the background wind. Besides the advantages of the implemented technique, we discuss its current challenges, like the use of reduced power aperture and processing time, as well as the future opportunities for improving the understanding of the complex small-scale atmospheric dynamics behind PMSEs. © 2019 Author(s)

    An imaging interferometry capability for the EISCAT Svalbard Radar.

    Get PDF
    Interferometric imaging (aperture synthesis imaging) is a technique used by radio astronomers to achieve angular resolution that far surpasses what is possible with a single large aperture. A similar technique has been used for radar imaging studies of equatorial ionospheric phenomena at the Jicamarca Radio Observatory. We present plans for adding an interferometric imaging capability to the EISCAT Svalbard Radar (ESR), a capability which will contribute significantly to several areas of active research, including naturally and artificially enhanced ion-acoustic echoes and their detailed relation in space and time to optical phenomena, polar mesospheric summer echoes (PMSE), and meteor studies. Interferometry using the two antennas of the ESR has demonstrated the existence of extremely narrow, fieldaligned scattering structures, but having only a single baseline is a severe limitation for such studies. Building additional IS-class antennas at the ESR is not a trivial task. However, the very high scattering levels in enhanced ion-acoustic echoes and PMSE means that a passive receiver antenna of more modest gain should still be capable of detecting these echoes. In this paper we present simulations of what an imaging interferometer will be capable of observing for different antenna configurations and brightness distributions, under ideal conditions, using two different image inversion algorithms. We also discuss different antenna and receiver technologies

    Two-Body Cabibbo-Suppressed Charmed Meson Decays

    Get PDF
    Singly-Cabibbo-suppressed decays of charmed particles governed by the quark subprocesses c→susˉc \to s u \bar s and c→dudˉc \to d u \bar d are analyzed using a flavor-topology approach, based on a previous analysis of the Cabibbo-favored decays governed by c→sudˉc \to s u \bar d. Decays to PPPP and PVPV, where PP is a pseudoscalar meson and VV is a vector meson, are considered. We include processes in which η\eta and ηâ€Č\eta ' are produced.Comment: 18 pages, latex, 2 figures, to be submitted to Phys. Rev.

    Comments on the Quark Content of the Scalar Meson f0(1370)f_0(1370)

    Full text link
    Based on the measurements of (Ds+,D+)→f0(1370)π+(D_s^+,D^+)\to f_0(1370)\pi^+ we determine, in a model independent way, the allowed ssˉs\bar s content in the scalar meson f0(1370)f_0(1370). We find that, on the one hand, if this isoscalar resonance is a pure nnˉn\bar n state [ nnˉ≡(uuˉ+ddˉ)/2]n\bar n\equiv(u\bar u+d\bar d)/\sqrt{2} ], a very large WW-annihilation term will be needed to accommodate Ds+→f0(1370)π+D_s^+\to f_0(1370)\pi^+. On the other hand, the ssˉs\bar s component of f0(1370)f_0(1370) should be small enough to avoid excessive Ds+→f0(1370)π+D_s^+\to f_0(1370)\pi^+ induced from the external WW-emission. Measurement of f0(1370)f_0(1370) production in the decay Ds+→K+K−π+D_s^+\to K^+K^-\pi^+ will be useful to test the above picture. For the decay D0→f0(1370)Kˉ0D^0\to f_0(1370)\bar K^0 which is kinematically barely or even not allowed, depending on the mass of f0(1370)f_0(1370), we find that the finite width effect of f0(1370)f_0(1370) plays a crucial role on the resonant three-body decay D0→f0(1370)Kˉ0→π+π−Kˉ0D^0\to f_0(1370)\bar K^0\to\pi^+\pi^-\bar K^0.Comment: 12 pages, 2 figure

    Hadronic Charmed Meson Decays Involving Tensor Mesons

    Full text link
    Charmed meson decays into a pseudoscalar meson P and a tensor meson T are studied. The charm to tensor meson transition form factors are evaluated in the Isgur-Scora-Grinstein-Wise (ISGW) quark model. It is shown that the Cabibbo-allowed decay Ds+→f2(1270)π+D_s^+\to f_2(1270)\pi^+ is dominated by the W-annihilation contribution and has the largest branching ratio in D→TPD\to TP decays. We argue that the Cabibbo-suppressed mode D+→f2(1270)π+D^+\to f_2(1270)\pi^+ should be suppressed by one order of magnitude relative to Ds+→f2(1270)π+D_s^+\to f_2(1270)\pi^+. When the finite width effect of the tensor resonances is taken into account, the decay rate of D→TPD\to TP is generally enhanced by a factor of 2∌32\sim 3. Except for Ds+→f2(1270)π+D_s^+\to f_2(1270)\pi^+, the predicted branching ratios of D→TPD\to TP decays are in general too small by one to two orders of magnitude compared to experiment. However, it is very unlikely that the D→TD\to T transition form factors can be enhanced by a factor of 3∌53\sim 5 within the ISGW quark model to account for the discrepancy between theory and experiment. As many of the current data are still preliminary and lack sufficient statistic significance, more accurate measurements are needed to pin down the issue.Comment: 11 page
    • 

    corecore