51 research outputs found

    Apparent digestibility of insect protein meals for rainbow trout

    Get PDF
    Insect meals are considered to be promising future ingredients for aquaculture feeds. In past feeding trials in rainbow trout, insect meals were included in diets only on the basis of their nutrients content and energy density without taking into account their biological availability due to the lack of their digestible values. Apparent digestibility (ADC) provides good indication of the bioavailability of nutrients and energy thus providing rational basis for the correct inclusion of feedstuffs. The aim of this research was to assess, in an in vivo trial on rainbow trout, the ADC of five full fat insect meals: one Tenebrio molitor (TM), two Hermetia illucens obtained through two different process (HI1 and HI2), one Musca domestica (MD), and one Alphitobius diaperinus (AD). Fish were fed a high-quality reference diet (R) and test diets obtained mixing the R diet with each of the test ingredients at a ratio of 70:30. Diets contained 1% celite as inert marker. Fish were fed to visual satiety twice a day and faecal samples collected using a continuous automatic device. Faeces were freeze dried and frozen (-20 \ub0C) until analyses. The ADC of dry matter, crude protein and ether extract of each insect meal diet were calculated. ADC for dry matter varied between 70.07 (HI1) and 80.85 (TM). ADC for protein was above 84% in all treatments and resulted the highest in MD, TM and AD treatments. Ether extract apparent digestibility significantly differed among diets with the highest value reported for TM treatment. All treatments reported values higher than 96%. Observed differences could be due to the insect species and meal treatment but in general, tested insect meals were highly digestible for rainbow trout. The results from this research could be useful to optimize the diet formulation

    Honey bee pollen in meagre (Argyrosomus regius) juvenile diets: Effects on growth, diet digestibility, intestinal traits, and biochemical markers related to health and stress

    Get PDF
    This research aimed to evaluate the effects of the inclusion of honey bee pollen (HBP) in meagre (Argyrosoumus regius) juveniles’ diets on growth performance, diet digestibility, intestinal morphology, and immunohistochemistry. Furthermore, stress-related molecular markers and biochemical blood profile of fish were evaluated, together with mineral trace and toxic element concentration in pollen and diets. Specimens of meagre (360) of 3.34 ± 0.14 g initial body weight, were randomly allocated to twelve 500 L circular tanks (30 fish per tank). Four diets were formulated: a control diet and three experimental diets with 1%, 2.5%, and 4% of HBP inclusion. All the growth parameters and crude protein and ether extract digestibility coefficients were negatively linearly affected by increased HBP inclusion (p < 0.0001). Histology of medium intestine showed slight signs of alterations in group HPB1 and HPB2.5 compared to control. Fish from HBP4 group showed severe alterations at the intestinal mucosa level. Immunohistochemical detection of TNF-α in the medium intestine showed the presence of TNF-α+ cells in the lamina propria, which resulted in accordance with the increased level of the TNF-α protein detected by immunoblotting in the liver. This stress situation was confirmed by the increased hepatic level of HSP70 (p < 0.05) in fish fed the HBP4 diet and by the linear decrease of total serum protein levels in HBP-containing diets (p < 0.0001). These negative effects can be related to the ultrastructure of the bee pollen grain walls, which make the bioactive substances unavailable and can irritate the intestine of a carnivorous fish such as meagre

    Tenebrio molitor larvae meal inclusion affects hepatic proteome and apoptosis and/or autophagy of three farmed fish species

    Get PDF
    Herein, the effect of dietary inclusion of insect (Tenebrio molitor) meal on hepatic pathways of apoptosis and autophagy in three farmed fish species, gilthead seabream (Sparus aurata), European seabass (Dicentrarchus labrax) and rainbow trout (Oncorhynchus mykiss), fed diets at 25%, 50% and 60% insect meal inclusion levels respectively, was investigated. Hepatic proteome was examined by liver protein profiles from the three fish species, obtained by two-dimensional gel electrophoresis. Although cellular stress was evident in the three teleost species following insect meal, inclusion by T. molitor, D. labrax and O. mykiss suppressed apoptosis through induction of hepatic autophagy, while in S. aurata both cellular procedures were activated. Protein abundance showed that a total of 30, 81 and 74 spots were altered significantly in seabream, European seabass and rainbow trout, respectively. Insect meal inclusion resulted in individual protein abundance changes, with less number of proteins altered in gilthead seabream compared to European seabass and rainbow trout. This is the first study demonstrating that insect meal in fish diets is causing changes in liver protein abundances. However, a species-specific response both in the above mentioned bioindicators, indicates the need to strategically manage fish meal replacement in fish diets per species

    Dietary tuna hydrolysate modulates growth performance, immune response, intestinal morphology and resistance to Streptococcus iniae in juvenile barramundi, Lates calcarifer

    Get PDF
    This study investigated the effects of tuna hydrolysate (TH) inclusion in fishmeal (FM) based diets on the growth performance, innate immune response, intestinal health and resistance to Streptococcus iniae infection in juvenile barramundi, Lates calcarifer. Five isonitrogenous and isoenergetic experimental diets were prepared with TH, replacing FM at levels of 0% (control) 5%, 10%, 15% and 20%, and fed fish to apparent satiation three times daily for 8 weeks. The results showed that fish fed diets containing 5% and 10% TH had significantly higher final body weight and specific growth rate than the control. A significant reduction in blood glucose was found in fish fed 10%, 15% and 20% TH compared to those in the control whereas none of the other measured blood and serum indices were influenced by TH inclusion. Histological observation revealed a significant enhancement in goblet cell numbers in distal intestine of fish fed 5 to 10% TH in the diet. Moreover, fish fed 10% TH exhibited the highest resistance against Streptococcus iniae infection during a bacterial challenge trial. These findings therefore demonstrate that the replacement of 5 to 10% FM with TH improves growth, immune response, intestinal health and disease resistance in juvenile barramundi

    Plant Products Affect Growth and Digestive Efficiency of Cultured Florida Pompano (Trachinotus carolinus) Fed Compounded Diets

    Get PDF
    Costs of compounded diets containing fish meal as a primary protein source can be expected to rise as fish meal prices increase in response to static supply and growing demand. Alternatives to fish meal are needed to reduce production costs in many aquaculture enterprises. Some plant proteins are potential replacements for fish meal because of their amino acid composition, lower cost and wide availability. In this study, we measured utilization of soybean meal (SBM) and soy protein concentrate (SPC) by Florida pompano fed compounded diets, to determine the efficacy of these products as fish meal replacements. We also calculated apparent digestibility coefficients (ADCs) for canola meal (CM), corn gluten meal (CGM), and distillers dried grains with solubles (DDGS), following typical methods for digestibility trials. Juvenile Florida pompano were fed fish-meal-free diets containing graded levels of SBM and SPC, and weight gain was compared to a control diet that contained SBM, SPC, and fish meal. Fish fed diets that contained 25–30 percent SBM in combination with 43–39 percent SPC had weight gain equivalent to fish fed the control diet with fish meal, while weight gain of fish fed other soy combinations was significantly less than that of the control group. Apparent crude protein digestibility of CGM was significantly higher than that of DDGS but not significantly different from CM. Apparent energy digestibility of DDGS was significantly lower than CGM but significantly higher than CM. Findings suggested that composition of the reference diet used in a digestibility trial affects the values of calculated ADCs, in addition to the chemical and physical attributes of the test ingredient

    Life history traits influence in gonad composition of two sympatric species of flatfish

    Get PDF
    AbstractParalichthys orbignyanus and Paralichthys patagonicus are flatfish with different life history traits, having in common the condition of breeding in seawater. Paralichthys patagonicus remain their whole life in open seawater and Paralichthys orbignyanus are sometimes found in brackish water bodies. As marine and estuarine food webs have different fatty acid (FA) compositions, the aim of this study was to characterize the gonadal maturation of P. orbignyanus and P. patagonicus females through the analysis of lipid content and FA profile in order to understand to what extent life history traits are reflected in the ovarian composition. During gonadal maturation lipid content increased and FA profiles changed in both species, but the lipid increase was greater in P. orbignyanus. The N-3FA and n-3HUFA proportions increased in both species but were higher in P. orbignyanus. The differences between the lifestyles of these species were reflected in the ovarian FA profile mainly as a result of differences in their FA metabolism, causing a greater accumulation of n-3FA and n-3HUFA in P. orbignyanus than in P. patagonicus. The higher lipid accumulation in P. orbignyanus’ ovaries could indicate that this species, feeding in brackish water bodies, has the possibility of storing more energy than P. patagonicus

    Does dietary insect meal affect the fish immune system? The case of mealworm, Tenebrio molitor on European sea bass, Dicentrarchus labrax

    No full text
    Feeding small European sea bass, Dicentrarchus labrax, for 6 weeks with Tenebrio molitor larval meal showed significant anti-inflammatory responses (ceruloplasmin, myeloperoxidase and nitric oxide). Serum bacteriolytic activity against a Gram negative bacterium was not significantly affected by dietary Tenebrio, while both lysozyme antibacterial activity and serum trypsin inhibition usually linked to the anti-parasite activity of the fish, were significantly enhanced. The latter may be due to the similarities in the composition of the exoskeleton of parasites and insects that may therefore act as an immunostimulant potentially increasing the anti-parasitic activity. The addition of exogenous proteases significantly decreased both trypsin-inhibition and serum bacteriolytic activity probably through direct inhibition of the proteins responsible for these immune functions. Further investigation involving bacterial or parasitic challenges will be necessary to assess if the effects of dietary mealworm meal on the immune system observed in the present study are translated into an improved resistance to diseases
    corecore