1,329 research outputs found

    Direct observation of large temperature fluctuations during DNA thermal denaturation

    Get PDF
    In this paper we report direct measurement of large low frequency temperature fluctuations in double stranded (ds) DNA when it undergoes thermal denaturation transition. The fluctuation, which occurs only in the temperature range where the denaturation occurs, is several orders more than the expected equilibrium fluctuation. It is absent in single stranded (ss) DNA of the same sequence. The fluctuation at a given temperature also depends on the wait time and vanishes in a scale of few hours. It is suggested that the large fluctuation occurs due to coexisting denaturated and closed base pairs that are in dynamic equilibrium due to transition through a potential barrier in the scale of 25-30k_{B}T_{0}(T_{0}=300K).Comment: 4 pages, 5 figures, Replaced with revised versio

    A First Comparison of SLOPE and Other LIGO Burst Event Trigger Generators

    Get PDF
    A number of different methods have been proposed to identify unanticipated burst sources of gravitational waves in data arising from LIGO and other gravitational wave detectors. When confronted with such a wide variety of methods one is moved to ask if they are all necessary, i.e. given detector data that is assumed to have no gravitational wave signals present, do they generally identify the same events with the same efficiency, or do they each 'see' different things in the detector? Here we consider three different methods, which have been used within the LIGO Scientific Collaboration as part of its search for unanticipated gravitational wave bursts. We find that each of these three different methods developed for identifying candidate gravitational wave burst sources are, in fact, attuned to significantly different features in detector data, suggesting that they may provide largely independent lists of candidate gravitational wave burst events.Comment: 10 Pages, 5 Figures, Presented at the 10th Gravitational Wave Data Analysis Workshop (GWDAW-10), 14-17 December 2005 at the University of Texas, Brownsvill

    Detection of gravitational-wave bursts with chirplet-like template families

    Full text link
    Gravitational Wave (GW) burst detection algorithms typically rely on the hypothesis that the burst signal is "locally stationary", that is it changes slowly with frequency. Under this assumption, the signal can be decomposed into a small number of wavelets with constant frequency. This justifies the use of a family of sine-Gaussian templates in the Omega pipeline, one of the algorithms used in LIGO-Virgo burst searches. However there are plausible scenarios where the burst frequency evolves rapidly, such as in the merger phase of a binary black hole and/or neutron star coalescence. In those cases, the local stationarity of sine-Gaussians induces performance losses, due to the mismatch between the template and the actual signal. We propose an extension of the Omega pipeline based on chirplet-like templates. Chirplets incorporate an additional parameter, the chirp rate, to control the frequency variation. In this paper, we show that the Omega pipeline can easily be extended to include a chirplet template bank. We illustrate the method on a simulated data set, with a family of phenomenological binary black-hole coalescence waveforms embedded into Gaussian LIGO/Virgo-like noise. Chirplet-like templates result in an enhancement of the measured signal-to-noise ratio.Comment: 8 pages, 6 figures. Submitted to Class. Quantum Grav. Special issue: Proceedings of GWDAW-14, Rome (Italy), 2010; fixed several minor issue

    Combining Molecular Dynamics with Lattice-Boltzmann: A Hybrid Method for the Simulation of (Charged) Colloidal Systems

    Full text link
    We present a hybrid method for the simulation of colloidal systems, that combines molecular dynamics (MD) with the Lattice-Boltzmann (LB) scheme. The LB method is used as a model for the solvent in order to take into account the hydrodynamic mass and momentum transport through the solvent. The colloidal particles are propagated via MD and they are coupled to the LB fluid by viscous forces. With respect to the LB fluid, the colloids are represented by uniformly distributed points on a sphere. Each such point (with a velocity V(r) at any off-lattice position r is interacting with the neighboring eight LB nodes by a frictional force F=\xi_0(V(r)-u(r)) with \xi_0 being a friction force and u(r) being the velocity of the fluid at the position r. Thermal fluctuations are introduced in the framework of fluctuating hydrodynamics. This coupling scheme has been proposed recently for polymer systems by Ahlrichs and D"unweg [J. Chem. Phys. 111, 8225 (1999)]. We investigate several properties of a single colloidal particle in a LB fluid, namely the effective Stokes friction and long time tails in the autocorrelation functions for the translational and rotational velocity. Moreover, a charged colloidal system is considered consisting of a macroion, counterions and coions that are coupled to a LB fluid. We study the behavior of the ions in a constant electric field. In particular, an estimate of the effective charge of the macroion is yielded from the number of counterions that move with the macroion in the direction of the electric field.Comment: 37 pages, 12 figure

    The Relativistic Theory of Scattering in Coulomb Field by Atoms

    Get PDF

    Magnetoelastic effects in Jahn-Teller distorted CrF2_2 and CuF2_2 studied by neutron powder diffraction

    Full text link
    We have studied the temperature dependence of crystal and magnetic structures of the Jahn-Teller distorted transition metal difluorides CrF2_2 and CuF2_2 by neutron powder diffraction in the temperature range 2-280 K. The lattice parameters and the unit cell volume show magnetoelastic effects below the N\'eel temperature. The lattice strain due to the magnetostriction effect couples with the square of the order parameter of the antiferromagnetic phase transition. We also investigated the temperature dependence of the Jahn-Teller distortion which does not show any significant effect at the antiferromagnetic phase transition but increases linearly with increasing temperature for CrF2_2 and remains almost independent of temperature in CuF2_2. The magnitude of magnetovolume effect seems to increase with the low temperature saturated magnetic moment of the transition metal ions but the correlation is not at all perfect

    Magnetic structure of the Eu2+ moments in superconducting EuFe2(As1-xPx)2 with x = 0.19

    Get PDF
    The magnetic structure of the Eu2+ moments in the superconducting EuFe2(As1-xPx)2 sample with x = 0.19 has been determined using neutron scattering. We conclude that the Eu2+ moments are aligned along the c direction below T_C = 19.0(1) K with an ordered moment of 6.6(2) mu_B in the superconducting state. An impurity phase similar to the underdoped phase exists within the bulk sample which orders antiferromagnetically below T_N = 17.0(2) K. We found no indication of iron magnetic order, nor any incommensurate magnetic order of the Eu2+ moments in the sample.Comment: Accepted for publication in Phys. Rev. B (regular article

    Gravitational wave burst vetoes in the LIGO S2 and S3 data analyses

    Full text link
    The LIGO detectors collected about 4 months of data in 2003-2004 during two science runs, S2 and S3. Several environmental and auxiliary channels that monitor the instruments' physical environment and overall interferometric operation were analyzed in order to establish the quality of the data as well as the presence of transients of non-astrophysical origin. This analysis allowed better understanding of the noise character of the instruments and the establishment of correlations between transients in these channels and the one recording the gravitational wave strain. In this way vetoes for spurious burst were identified. We present the methodology we followed in this analysis and the results from the S2 and S3 veto analysis within the context of the search for gravitational wave bursts.Comment: 9 pages, 4 figures, submitted to Classical and Quantum Gravity for the special issue of the GWDAW9 Proceeding

    Magnetic Order Beyond RKKY in the Classical Kondo Lattice

    Full text link
    We study the Kondo lattice model of band electrons coupled to classical spins, in three dimensions, using a combination of variational calculation and Monte Carlo. We use the weak coupling `RKKY' window and the strong coupling regime as benchmarks, but focus on the physically relevant intermediate coupling regime. Even for modest electron-spin coupling the phase boundaries move away from the RKKY results, the non interacting Fermi surface no longer dictates magnetic order, and weak coupling `spiral' phases give way to collinear order. We use these results to revisit the classic problem of 4f magnetism and demonstrate how both electronic structure and coupling effects beyond RKKY control the magnetism in these materials.Comment: 6 pages, 4 figs. Improved figures, expanded captions. To appear in Europhys. Let

    Hyperfine interaction and electronic spin fluctuation study on Sr2x_{2-x}Lax_xFeCoO6_6 (x = 0, 1, 2) by high-resolution back-scattering neutron spectroscopy

    Full text link
    The study of hyperfine interaction by high-resolution inelastic neutron scattering is not very well known compared to the other competing techniques viz. NMR, M\"ossbauer, PACS etc. Also the study is limited mostly to magnetically ordered systems. Here we report such study on Sr2x_{2-x}Lax_xFeCoO6_6 (x = 0, 1, 2) of which first (Sr2_2FeCoO6_6 with x = 0) has a canonical spin spin glass, the second (SrLaFeCoO6_6 with x = 1) has a so-called magnetic glass and the third (La2_2FeCoO6_6 with x = 2) has a magnetically ordered ground state. Our present study revealed clear inelastic signal for SrLaFeCoO6_6, possibly also inelastic signal for Sr2_2FeCoO6_6 below the spin freezing temperatures TsfT_{sf} but no inelastic signal at all for for the magnetically ordered La2_2FeCoO6_6 in the neutron scattering spectra. The broadened inelastic signals observed suggest hyperfine field distribution in the two disordered magnetic glassy systems and no signal for the third compound suggests no or very small hyperfine field at the Co nucleus due to Co electronic moment. For the two magnetic glassy system apart from the hyperfine signal due only to Co, we also observed electronic spin fluctuations probably from both Fe and Co electronic moments. \end{abstract
    corecore