158 research outputs found

    Negative mood reverses devaluation of goal-directed drug-seeking favouring an incentive learning account of drug dependence.

    Get PDF
    BACKGROUND: Two theories explain how negative mood primes smoking behaviour. The stimulus–response (S-R) account argues that in the negative mood state, smoking is experienced as more reinforcing, establishing a direct (automatic) association between the negative mood state and smoking behaviour. By contrast, the incentive learning account argues that in the negative mood state smoking is expected to be more reinforcing, which integrates with instrumental knowledge of the response required to produce that outcome. OBJECTIVES: One differential prediction is that whereas the incentive learning account anticipates that negative mood induction could augment a novel tobacco-seeking response in an extinction test, the S-R account could not explain this effect because the extinction test prevents S-R learning by omitting experience of the reinforcer. METHODS: To test this, overnight-deprived daily smokers (n = 44) acquired two instrumental responses for tobacco and chocolate points, respectively, before smoking to satiety. Half then received negative mood induction to raise the expected value of tobacco, opposing satiety, whilst the remainder received positive mood induction. Finally, a choice between tobacco and chocolate was measured in extinction to test whether negative mood could augment tobacco choice, opposing satiety, in the absence of direct experience of tobacco reinforcement. RESULTS: Negative mood induction not only abolished the devaluation of tobacco choice, but participants with a significant increase in negative mood increased their tobacco choice in extinction, despite satiety. CONCLUSIONS: These findings suggest that negative mood augments drug-seeking by raising the expected value of the drug through incentive learning, rather than through automatic S-R control

    Background and Proposed Design for a Metformin Abdominal Aortic Aneurysm Suppression Trial

    Get PDF
    Abdominal aortic aneurysm (AAA) may lead to rupture and death if left untreated. While endovascular or surgical repair is generally recommended for AAA greater than 5–5.5 cm, the vast majority of aneurysms detected by screening modalities are smaller than this threshold. Once discovered, there would be a significant potential benefit in suppressing the growth of these small aneurysms in order to obviate the need for repair and mitigate rupture risk. Patients with diabetes, in particular those taking the oral hypoglycaemic medication metformin, have been shown to have lower incidence, growth rate, and rupture risk of AAA. Metformin therefore represents a widely available, non-toxic, potential inhibitor of AAA growth, but thus far no prospective clinical studies have evaluated this. Here, we present the background, rationale, and design for a randomised, double-blind, placebo-controlled clinical trial of metformin for growth suppression in patients with small AAA

    Low Temperature Opacities

    Full text link
    Previous computations of low temperature Rosseland and Planck mean opacities from Alexander & Ferguson (1994) are updated and expanded. The new computations include a more complete equation of state with more grain species and updated optical constants. Grains are now explicitly included in thermal equilibrium in the equation of state calculation, which allows for a much wider range of grain compositions to be accurately included than was previously the case. The inclusion of high temperature condensates such as Al2_2O3_3 and CaTiO3_3 significantly affects the total opacity over a narrow range of temperatures before the appearance of the first silicate grains. The new opacity tables are tabulated for temperatures ranging from 30000 K to 500 K with gas densities from 10−4^{-4} g cm−3^{-3} to 10−19^{-19} g cm−3^{-3}. Comparisons with previous Rosseland mean opacity calculations are discussed. At high temperatures, the agreement with OPAL and Opacity Project is quite good. Comparisons at lower temperatures are more divergent as a result of differences in molecular and grain physics included in different calculations. The computation of Planck mean opacities performed with the opacity sampling method are shown to require a very large number of opacity sampling wavelength points; previously published results obtained with fewer wavelength points are shown to be significantly in error. Methods for requesting or obtaining the new tables are provided.Comment: 39 pages with 12 figures. To be published in ApJ, April 200

    Gut Microbial Trimethylamine Is Elevated in Alcohol-Associated Hepatitis and Contributes to Ethanol-Induced Liver Injury in Mice

    Get PDF
    There is mounting evidence that microbes residing in the human intestine contribute to diverse alcohol-associated liver diseases (ALD) including the most deadly form known as alcohol-associated hepatitis (AH). However, mechanisms by which gut microbes synergize with excessive alcohol intake to promote liver injury are poorly understood. Furthermore, whether drugs that selectively target gut microbial metabolism can improve ALD has never been tested. We used liquid chromatography tandem mass spectrometry to quantify the levels of microbe and host choline co-metabolites in healthy controls and AH patients, finding elevated levels of the microbial metabolite trimethylamine (TMA) in AH. In subsequent studies, we treated mice with non-lethal bacterial choline TMA lyase (CutC/D) inhibitors to blunt gut microbe-dependent production of TMA in the context of chronic ethanol administration. Indices of liver injury were quantified by complementary RNA sequencing, biochemical, and histological approaches. In addition, we examined the impact of ethanol consumption and TMA lyase inhibition on gut microbiome structure via 16S rRNA sequencing. We show the gut microbial choline metabolite TMA is elevated in AH patients and correlates with reduced hepatic expression of the TMA oxygenase flavin-containing monooxygenase 3 (FMO3). Provocatively, we find that small molecule inhibition of gut microbial CutC/D activity protects mice from ethanol-induced liver injury. CutC/D inhibitor-driven improvement in ethanol-induced liver injury is associated with distinct reorganization of the gut microbiome and host liver transcriptome. The microbial metabolite TMA is elevated in patients with AH, and inhibition of TMA production from gut microbes can protect mice from ethanol-induced liver injury

    Regulation of Hepatic Triacylglycerol Metabolism by CGI-58 Does Not Require ATGL Co-activation

    Get PDF
    SummaryAdipose triglyceride lipase (ATGL) and comparative gene identification 58 (CGI-58) are critical regulators of triacylglycerol (TAG) turnover. CGI-58 is thought to regulate TAG mobilization by stimulating the enzymatic activity of ATGL. However, it is not known whether this coactivation function of CGI-58 occurs in vivo. Moreover, the phenotype of human CGI-58 mutations suggests ATGL-independent functions. Through direct comparison of mice with single or double deficiency of CGI-58 and ATGL, we show here that CGI-58 knockdown causes hepatic steatosis in both the presence and absence of ATGL. CGI-58 also regulates hepatic diacylglycerol (DAG) and inflammation in an ATGL-independent manner. Interestingly, ATGL deficiency, but not CGI-58 deficiency, results in suppression of the hepatic and adipose de novo lipogenic program. Collectively, these findings show that CGI-58 regulates hepatic neutral lipid storage and inflammation in the genetic absence of ATGL, demonstrating that mechanisms driving TAG lipolysis in hepatocytes differ significantly from those in adipocytes

    Intraspecific Inversions Pose a Challenge for the trnH-psbA Plant DNA Barcode

    Get PDF
    BACKGROUND: The chloroplast trnH-psbA spacer region has been proposed as a prime candidate for use in DNA barcoding of plants because of its high substitution rate. However, frequent inversions associated with palindromic sequences within this region have been found in multiple lineages of Angiosperms and may complicate its use as a barcode, especially if they occur within species. METHODOLOGY/PRINCIPAL FINDINGS: Here, we evaluate the implications of intraspecific inversions in the trnH-psbA region for DNA barcoding efforts. We report polymorphic inversions within six species of Gentianaceae, all narrowly circumscribed morphologically: Gentiana algida, Gentiana fremontii, Gentianopsis crinita, Gentianopsis thermalis, Gentianopsis macrantha and Frasera speciosa. We analyze these sequences together with those from 15 other species of Gentianaceae and show that typical simple methods of sequence alignment can lead to misassignment of conspecifics and incorrect assessment of relationships. CONCLUSIONS/SIGNIFICANCE: Frequent inversions in the trnH-psbA region, if not recognized and aligned appropriately, may lead to large overestimates of the number of substitution events separating closely related lineages and to uniting more distantly related taxa that share the same form of the inversion. Thus, alignment of the trnH-psbA spacer region will need careful attention if it is used as a marker for DNA barcoding

    NGF-TrkA signaling dictates neural ingrowth and aberrant osteochondral differentiation after soft tissue trauma

    Get PDF
    : Pain is a central feature of soft tissue trauma, which under certain contexts, results in aberrant osteochondral differentiation of tissue-specific stem cells. Here, the role of sensory nerve fibers in this abnormal cell fate decision is investigated using a severe extremity injury model in mice. Soft tissue trauma results in NGF (Nerve growth factor) expression, particularly within perivascular cell types. Consequently, NGF-responsive axonal invasion occurs which precedes osteocartilaginous differentiation. Surgical denervation impedes axonal ingrowth, with significant delays in cartilage and bone formation. Likewise, either deletion of Ngf or two complementary methods to inhibit its receptor TrkA (Tropomyosin receptor kinase A) lead to similar delays in axonal invasion and osteochondral differentiation. Mechanistically, single-cell sequencing suggests a shift from TGFÎČ to FGF signaling activation among pre-chondrogenic cells after denervation. Finally, analysis of human pathologic specimens and databases confirms the relevance of NGF-TrkA signaling in human disease. In sum, NGF-mediated TrkA-expressing axonal ingrowth drives abnormal osteochondral differentiation after soft tissue trauma. NGF-TrkA signaling inhibition may have dual therapeutic use in soft tissue trauma, both as an analgesic and negative regulator of aberrant stem cell differentiation
    • 

    corecore