236 research outputs found

    Duplex Moiety Kidney With Ureteral Ectopia; A Case Series

    Get PDF
    Ureteral ectopia is a common condition presenting as incontinence in females and incidentally detected in males. The diagnosis requires thorough radiological investigations to delineate the anatomy and formulate the treatment. The prognosis is generally excellent. We presented a series of three cases of ureteral ectopia and discussion regarding their management.Keywords: Female; Urinary Incontinence; Ectopic Ureter; Duplex Moiety Kidney

    Jamming Attack Detection and Evaluating Using Wireless Application

    Get PDF
    When data is transferred from one host to another host,attacker may try to attack the packet or data which is in transit.Inorder to avoid such kind of attack in time critical wireless application and delivery message securely in wireless application. In this paper, we aim at modeling and detecting jamming attacks against time-critical wireless networks.To measure network performance ,packet loss and throughput metrics are used . To quantify the performance of time-critical applications,message invalidation ratio metric are used. This approach is inspired by the similarity between the behavior of a jammer who attempts to disrupt the delivery of a message and the behavior of a gambler who intends to win a gambling game. By gambling-based modeling and real-time modules, we can successful delivery time-critical message under a variety of jamming attacks. DOI: 10.17762/ijritcc2321-8169.15038

    Co-axial dual-core resonant leaky fibre for optical amplifiers

    Get PDF
    We present a co-axial dual-core resonant leaky optical fibre design, in which the outer core is made highly leaky. A suitable choice of parameters can enable us to resonantly couple power from the inner core to the outer core. In a large-core fibre, such a resonant coupling can considerably increase the differential leakage loss between the fundamental and the higher order modes and can result in effective single-mode operation. In a small-core single-mode fibre, such a coupling can lead to sharp increase in the wavelength dependent leakage loss near the resonant wavelength and can be utilized for the suppression of amplified spontaneous emission and thereby gain equalization of an optical amplifier. We study the propagation characteristics of the fibre using the transfer matrix method and present an example of each, the large-mode-area design for high power amplifiers and the wavelength tunable leakage loss design for inherent gain equalization of optical amplifiers.Comment: 6 page

    The Dispersion Velocity of Galactic Dark Matter Particles

    Get PDF
    The self-consistent spatial distribution of particles of Galactic dark matter is derived including their own gravitational potential, as also that of the visible matter of the Galaxy. In order to reproduce the observed rotation curve of the Galaxy the value of the dispersion velocity of the dark matter particles, \rmsveldm, should be \sim 600\kmps or larger.Comment: RevTex, 4 pages, 1 ps figure, accepted for publication in Physical Review Letter

    Colossal magnetoresistance in EuZn2_2P2_2 and its electronic and magnetic structure

    Full text link
    We investigate single crystals of the trigonal antiferromagnet EuZn2_2P2_2 (P3m1P\overline{3}m1) by means of electrical transport, magnetization measurements, X-ray magnetic scattering, optical reflectivity, angle-resolved photoemission spectroscopy (ARPES) and ab-initio band structure calculations (DFT+U). We find that the electrical resistivity of EuZn2_2P2_2 increases strongly upon cooling and can be suppressed in magnetic fields by several orders of magnitude (CMR effect). Resonant magnetic scattering reveals a magnetic ordering vector of q=(0012)q = (0\, 0\, \frac{1}{2}), corresponding to an AA-type antiferromagnetic (AFM) order, below TN=23.7KT_{\rm N} = 23.7\,\rm K. We find that the moments are canted out of the aaa-a plane by an angle of about 40±1040^{\circ}\pm 10^{\circ} degrees and tilted away from the [100] - direction by 30±530^{\circ}\pm 5^{\circ}. We observe nearly isotropic magnetization behavior for low fields and low temperatures which is consistent with the magnetic scattering results. The magnetization measurements show a deviation from the Curie-Weiss behavior below 150K\approx 150\,\rm K, the temperature below which also the field dependence of the material's resistivity starts to increase. An analysis of the infrared reflectivity spectrum at T=295KT=295\,\rm K allows us to resolve the main phonon bands and intra-/interband transitions, and estimate indirect and direct band gaps of Eiopt=0.09eVE_i^{\mathrm{opt}}=0.09\,\rm{eV} and Edopt=0.33eVE_d^{\mathrm{opt}}=0.33\,\rm{eV}, respectively, which are in good agreement with the theoretically predicted ones. The experimental band structure obtained by ARPES is nearly TT-independent above and below TNT_{\rm N}. The comparison of the theoretical and experimental data shows a weak intermixing of the Eu 4ff states close to the Γ\Gamma point with the bands formed by the phosphorous 3pp orbitals leading to an induction of a small magnetic moment at the P sites

    Amygdala circuitry mediating reversible and bidirectional control of anxiety

    Get PDF
    Anxiety—a sustained state of heightened apprehension in the absence of immediate threat—becomes severely debilitating in disease states. Anxiety disorders represent the most common of psychiatric diseases (28% lifetime prevalence) and contribute to the aetiology of major depression and substance abuse. Although it has been proposed that the amygdala, a brain region important for emotional processing, has a role in anxiety, the neural mechanisms that control anxiety remain unclear. Here we explore the neural circuits underlying anxiety-related behaviours by using optogenetics with two-photon microscopy, anxiety assays in freely moving mice, and electrophysiology. With the capability of optogenetics to control not only cell types but also specific connections between cells, we observed that temporally precise optogenetic stimulation of basolateral amygdala (BLA) terminals in the central nucleus of the amygdala (CeA)—achieved by viral transduction of the BLA with a codon-optimized channelrhodopsin followed by restricted illumination in the downstream CeA—exerted an acute, reversible anxiolytic effect. Conversely, selective optogenetic inhibition of the same projection with a third-generation halorhodopsin (eNpHR3.0) increased anxiety-related behaviours. Importantly, these effects were not observed with direct optogenetic control of BLA somata, possibly owing to recruitment of antagonistic downstream structures. Together, these results implicate specific BLA–CeA projections as critical circuit elements for acute anxiety control in the mammalian brain, and demonstrate the importance of optogenetically targeting defined projections, beyond simply targeting cell types, in the study of circuit function relevant to neuropsychiatric disease
    corecore