35 research outputs found

    Evaluation of the protein quality of Porphyridium cruentum

    Get PDF
    The amino acid profile of the red microalga Porphyridium cruentum and its protein extract have been determined in order to assess the nutritional quality of this biomass for human consumption. Total protein determined by elemental analysis represented 56 % of its dry weight. Hydro-soluble proteins extracted at pH 12 and 40 °C were analysed by the Lowry method giving 47 %, which represented 84 % of total protein per dry weight. The amino acid sequence of the biomass and the protein extract was composed of a set of essential (39 % for the former and 37 % for the latter) and non-essential amino acids (61 % for the former and 63 % for the latter) that compares favourably with the standard protein/amino acid requirements proposed by Food and Agricultural Organisation and World Health Organisation

    Influence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to-protein conversion factors

    Get PDF
    Additional evidence about the influence of the cell wall physical and chemical characteristics on protein extractability was determined by calculating the conversion factors of five different microalgae known to have different cell wall composition, and their protein extracts. The conversion factors obtained for crude rigid cell walled Chlorella vulgaris, Nannochloropsis oculata and Haematococcus pluvialis were 6.35, 6.28 and 6.25, respectively, but for their protein extracts the values were lower with 5.96, 5.86 and 5.63. On the other hand, conversion factor obtained for fragile cell walled microalgae Porphyridium cruentum and Athrospira platensis was 6.35 for the former and 6.27 for the latter, with no significant difference for their protein extract with 6.34 for the former and 6.21 for the latter. In addition, the highest hydro-soluble protein percentage recovered from total protein was for P. cruentum 80.3 % and A. platensis 69.5 % but lower for C. vulgaris with 43.3 %, N. oculata with 33.3 % and H. pluvialis with 27.5 %. The study spotted the light on the influence of the cell wall on evaluating the conversion factor and protein extractability. In addition, it showed the necessity of finding the conversion factor every time accurate protein quantification is required, and proved that there is not a universal conversion factor that can be recommended

    Synthesis of graft -copolymers from palm cellulose and solketal acrylate and their characterization

    Get PDF
    he use of partially biobased monomers to functionalize palm cellulose via graft-copolymerization was explored. The aim of this work is to recycle a waste, the leaves of palm trees, which are abundant in North African countries in order to obtain novel cellulose derivatives having interesting physico-chemical properties. Furthermore, the monomer that was used for the graft-copolymerization was synthesized from a biobased synthon, glycerol. The synthesis of graft-copolymers from cellulose and (2,2-dimethyl-1,3-dioxolan-4-yl)methyl acrylate (solketal acrylate, DMDMA) was studied to determine the optimal conditions for grafting. The maximum grafting weight gain was 27% obtained after 72min of reaction at 65°C with 6.4mmol KPS/eq OH and 1.51mol DMDMA/eq OH. THF, used as dispersion solvent, hinders the homopolymerization side-reaction by creation of terminating radicals. FTIR spectroscopy confirmed the grafting of monomers to cellulose and X-ray diffraction revealed an organized structure of the side-chains. Thermogravimetry showed that the grafting could not confer a higher thermal stability to cellulose (loss of 35°C in the decomposition temperature). Even though partial melting was observed when thermopressed, DSC analysis could not show a neat glass transition temperature but rather multiple exothermal peaks attributed to side-chains reorganization. Thermopressed grafted samples showed improved mechanical properties compared to palm cellulose

    Release of hydro-soluble microalgal proteins using mechanical and chemical treatments

    Get PDF
    In order to release proteins in the aqueous phase, high-pressure homogenization and alkaline treatments were applied to rupture the cell walls of five intensively grown microalgae. Protein characterisation was carried out by analysing the amino acid profiles of both the crude microalgae and the protein extracts, obtained after both types of treatment. The results showed that the proportion of proteins released from microalgae following both treatments was, in descending order: Porphyridium cruentum>Arthrospira platensis>Chlorella vulgaris>Nannochloropsis oculata>Haematococcus pluvialis, reflecting the increasingly protective, cell walls. Nonetheless, mechanical treatment released more proteins from all the microalgae compared to chemical treatment. The highest yield was for the fragile cell walled P. cruentum with 88% hydro-soluble proteins from total proteins, and the lowest from the rigid cell walled H. pluvialis with 41%. The proportion of essential and non-essential amino acids in the extract was assessed and compared to the crude microalgae profile. It was higher after alkaline treatment and much higher after high-pressure homogenization. These results suggest that non-essential amino acids are more concentrated actually inside the cells and that different types of proteins are being released by these two treatments

    Ethylene stimulates growth and affects fatty acid content of Synechocystis sp. PCC 6803

    Get PDF
    This set of results shows that the growth of wild type Synechocystis sp. PCC 6803 was enhanced by exogenous ethylene and inhibited by 1-methylcyclopropene (1-MCP), a specific inhibitor of ethylene receptors. The fact that the growth of a Synechocystis sp. PCC 6803 strain with the ethylene receptor deleted was unaffected by exogenous ethylene, brings additional proof that this is a specific effect of ethylene. The results also confirm previous observations regarding the positive impact of ethylene on the photochemical efficiency of PSII. Additionally, it was observed that exogenous ethylene enhanced accumulation of C16:0 and C18:0 and C18:1 in the wild type strain. Finally, observations were performed regarding the capacity of the wild type strain to biosynthesize ethylene in the culture medium in the presence of methionine. These results and the recent description of an ethylene receptor in Synechocystis should lead to new areas of research in the field of microalgae

    A community effort in SARS-CoV-2 drug discovery.

    Get PDF
    peer reviewedThe COVID-19 pandemic continues to pose a substantial threat to human lives and is likely to do so for years to come. Despite the availability of vaccines, searching for efficient small-molecule drugs that are widely available, including in low- and middle-income countries, is an ongoing challenge. In this work, we report the results of an open science community effort, the "Billion molecules against Covid-19 challenge", to identify small-molecule inhibitors against SARS-CoV-2 or relevant human receptors. Participating teams used a wide variety of computational methods to screen a minimum of 1 billion virtual molecules against 6 protein targets. Overall, 31 teams participated, and they suggested a total of 639,024 molecules, which were subsequently ranked to find 'consensus compounds'. The organizing team coordinated with various contract research organizations (CROs) and collaborating institutions to synthesize and test 878 compounds for biological activity against proteases (Nsp5, Nsp3, TMPRSS2), nucleocapsid N, RdRP (only the Nsp12 domain), and (alpha) spike protein S. Overall, 27 compounds with weak inhibition/binding were experimentally identified by binding-, cleavage-, and/or viral suppression assays and are presented here. Open science approaches such as the one presented here contribute to the knowledge base of future drug discovery efforts in finding better SARS-CoV-2 treatments.R-AGR-3826 - COVID19-14715687-CovScreen (01/06/2020 - 31/01/2021) - GLAAB Enric

    In yeast cells arrested at the early S-phase by hydroxyurea, rRNA gene promoters and chromatin are poised for transcription while rRNA synthesis is compromised

    No full text
    Hydroxyurea (HU) is an inhibitor of ribonucleotide reductase that is used as a chemotherapeutic agent to treat a number of chronic diseases. Addition of HU to cell cultures causes reduction of the dNTP cellular pool below levels that are required for DNA replication. This trigger dividing cells to arrest in early S-phase of the cell cycle. Cell division hinges on ribosome biogenesis, which is tightly regulated by rRNA synthesis. Remarkably, HU represses the expression of some genes the products of which are required for rRNA maturation. To gain more information on the cellular response to HU, we employed the yeast Saccharomyces cerevisiae as model organism and analyzed the changing aspects of closed to open forms of rRNA gene chromatin during cell cycle arrest, the arrangement of RNA polymerase-I (RNAPI) on the open genes, the presence of RNAPI transcription-factors, transcription and rRNA maturation. The rRNA gene chromatin structure was analyzed by psoralen crosslinking and the distribution of RNAPI was investigated by chromatin endogenous cleavage. In HU arrested cells nearly all rRNA genes were in the open form of chromatin, but only a portion of them was engaged with RNAPI. Analyses by chromatin immunoprecipitation confirmed that the overall formation of transcription pre-initiation complexes remained unchanged, suggesting that the onset of rRNA gene activation was not significantly affected by HU. Moreover, the in vitro transcription run-on assay indicated that RNAPI retained most of its transcription elongation activity. However, in HU treated cells, we found that (1) RNAPI accumulated next to the 5'-end of rRNA genes; (2) considerably less rRNA filaments were observed in electron micrographs of rDNA transcription units; and (3) rRNA maturation was compromised. It is established that HU inhibition of ribonucleotide reductase holds back DNA replication. This study indicates a hitherto unexplored cellular response to HU, namely altered rRNA synthesis, which could participate to hamper cell division
    corecore