183 research outputs found

    An Overview of Transience Bounds in Max-Plus Algebra

    Get PDF
    We survey and discuss upper bounds on the length of the transient phase of max-plus linear systems and sequences of max-plus matrix powers. In particular, we explain how to extend a result by Nachtigall to yield a new approach for proving such bounds and we state an asymptotic tightness result by using an example given by Hartmann and Arguelles.Comment: 13 pages, 2 figure

    The Firing Squad Problem Revisited

    Get PDF
    In the classical firing squad problem, an unknown number of nodes represented by identical finite state machines is arranged on a line and in each time unit each node may change its state according to its neighbors\u27 states. Initially all nodes are passive, except one specific node located at an end of the line, which issues a fire command. This command needs to be propagated to all other nodes, so that eventually all nodes simultaneously enter some designated ``firing" state. A natural extension of the firing squad problem, introduced in this paper, allows each node to postpone its participation in the squad for an arbitrary time, possibly forever, and firing is allowed only after all nodes decided to participate. This variant is highly relevant in the context of decentralized distributed computing, where processes have to coordinate for initiating various tasks simultaneously. The main goal of this paper is to study the above variant of the firing squad problem under the assumptions that the nodes are infinite state machines, and that the inter-node communication links can be changed arbitrarily in each time unit, i.e., are defined by a dynamic graph. In this setting, we study the following fundamental question: what connectivity requirements enable a solution to the firing squad problem? Our main result is an exact characterization of the dynamic graphs for which the firing squad problem can be solved. When restricted to static directed graphs, this characterization implies that the problem can be solved if and only if the graph is strongly connected. We also discuss how information on the number of nodes or on the diameter of the network, and the use of randomization, can improve the solutions to the problem

    Fast, Robust, Quantizable Approximate Consensus

    Get PDF
    We introduce a new class of distributed algorithms for the approximate consensus problem in dynamic rooted networks, which we call amortized averaging algorithms. They are deduced from ordinary averaging algorithms by adding a value-gathering phase before each value update. This results in a drastic drop in decision times, from being exponential in the number n of processes to being polynomial under the assumption that each process knows n. In particular, the amortized midpoint algorithm is the first algorithm that achieves a linear decision time in dynamic rooted networks with an optimal contraction rate of 1/2 at each update step. We then show robustness of the amortized midpoint algorithm under violation of network assumptions: it gracefully degrades if communication graphs from time to time are non rooted, or under a wrong estimate of the number of processes. Finally, we prove that the amortized midpoint algorithm behaves well if processes can store and send only quantized values, rendering it well-suited for the design of dynamic networked systems. As a corollary we obtain that the 2-set consensus problem is solvable in linear time in any dynamic rooted network model

    General Transience Bounds in Tropical Linear Algebra via Nachtigall Decomposition

    Get PDF
    International audienceWe present general transience bounds in tropical linear algebra based on Nachtigall's matrix decomposition. Our approach is also applicable to reducible matrices. The core technical novelty are general bounds on the transient of the maximum of two eventually periodic sequences. Our proof is algebraic in nature, in contrast to the existing purely graph-theoretic approaches
    • …
    corecore