64 research outputs found

    Crossover from weak to strong pairing in unconventional superconductors

    Full text link
    Superconductors are classified by their pairing mechanism and the coupling strength, measured as the ratio of the energy gap to the critical temperature, Tc. We present an extensive comparison of the gap ratios among many single- and multiband superconductors from simple metals to high-Tc cuprates and iron pnictides. Contrary to the recently suggested universality of this ratio in Fe-based superconductors, we find that the coupling in pnictides ranges from weak, near the BCS limit, to strong, as in cuprates, bridging the gap between these two extremes. Moreover, for Fe- and Cu-based materials, our analysis reveals a universal correlation between the gap ratio and Tc, which is not found in conventional superconductors and therefore supports a common unconventional pairing mechanism in both families. An important consequence of this result for ferropnictides is that the separation in energy between the excitonic spin-resonance mode and the particle-hole continuum, which determines the resonance damping, no longer appears independent of Tc.Comment: 15 pages, 3 figures, 5 tables with an exhaustive overview of the published gap and spin-resonance measurements in Fe-based superconductors. New in V3: updated references. To be published in Phys. Rev.

    Eliashberg approach to superconductivity-induced infrared anomalies in Ba0.68K0.32Fe2As2

    Get PDF
    We report the full complex dielectric function of high-purity Ba0.68K0.32Fe2As2\textrm{Ba}_{0.68}\textrm{K}_{0.32}\textrm{Fe}_2\textrm{As}_2 single crystals with Tc=38.5 KT_{\mathrm{c}}=38.5\ \textrm{K} determined by wide-band spectroscopic ellipsometry at temperatures 10T300 K10\leq T\leq300\ \textrm{K}. We discuss the microscopic origin of superconductivity-induced infrared optical anomalies in the framework of a multiband Eliashberg theory with two distinct superconducting gap energies $2\Delta_{\mathrm{A}}\approx6\ k_{\mathrm{B}}T_{\mathrm{c}}and and 2\Delta_{\mathrm{B}}\approx2.2\ k_{\mathrm{B}}T_{\mathrm{c}}.Theobservedunusualsuppressionoftheopticalconductivityinthesuperconductingstateatenergiesupto. The observed unusual suppression of the optical conductivity in the superconducting state at energies up to 14\ k_{\mathrm{B}}T_{\mathrm{c}}$ can be ascribed to spin-fluctuation--assisted processes in the clean limit of the strong-coupling regime.Comment: 4 pages, 4 figures; suppl. material: 3 pages, 2 figures, 1 interactive simulation (Fig. S3

    Interaction-induced singular Fermi surface in a high-temperature oxypnictide superconductor

    Get PDF
    In the family of iron-based superconductors, LaFeAsO-type materials possess the simplest electronic structure due to their pronounced two-dimensionality. And yet they host superconductivity with the highest transition temperature Tc=55K. Early theoretical predictions of their electronic structure revealed multiple large circular portions of the Fermi surface with a very good geometrical overlap (nesting), believed to enhance the pairing interaction and thus superconductivity. The prevalence of such large circular features in the Fermi surface has since been associated with many other iron-based compounds and has grown to be generally accepted in the field. In this work we show that a prototypical compound of the 1111-type, SmFe0.92Co0.08AsO, is at odds with this description and possesses a distinctly different Fermi surface, which consists of two singular constructs formed by the edges of several bands, pulled to the Fermi level from the depths of the theoretically predicted band structure by strong electronic interactions. Such singularities dramatically affect the low-energy electronic properties of the material, including superconductivity. We further argue that occurrence of these singularities correlates with the maximum superconducting transition temperature attainable in each material class over the entire family of iron-based superconductors.Comment: Open access article available online at http://www.nature.com/srep/2015/150521/srep10392/full/srep10392.htm

    Nanoscale layering of antiferromagnetic and superconducting phases in Rb2Fe4Se5

    Full text link
    We studied phase separation in a single-crystalline antiferromagnetic superconductor Rb2Fe4Se5 (RFS) using a combination of scattering-type scanning near-field optical microscopy (s-SNOM) and low-energy muon spin rotation (LE-\mu SR). We demonstrate that the antiferromagnetic and superconducting phases segregate into nanometer-thick layers perpendicular to the iron-selenide planes, while the characteristic in-plane size of the metallic domains reaches 10 \mu m. By means of LE-\mu SR we further show that in a 40-nm thick surface layer the ordered antiferromagnetic moment is drastically reduced, while the volume fraction of the paramagnetic phase is significantly enhanced over its bulk value. Self-organization into a quasiregular heterostructure indicates an intimate connection between the modulated superconducting and antiferromagnetic phases.Comment: 5 pages, 2 figures. Updated version published in Phys. Rev. Lett. on 5 July 201

    High-temperature superconductivity from fine-tuning of Fermi-surface singularities in iron oxypnictides

    Full text link
    In the family of the iron-based superconductors, the REREFeAsO-type compounds (with RERE being a rare-earth metal) exhibit the highest bulk superconducting transition temperatures (TcT_{\mathrm{c}}) up to 55 K55\ \textrm{K} and thus hold the key to the elusive pairing mechanism. Recently, it has been demonstrated that the intrinsic electronic structure of SmFe0.92_{0.92}Co0.08_{0.08}AsO (Tc=18 KT_{\mathrm{c}}=18\ \textrm{K}) is highly nontrivial and consists of multiple band-edge singularities in close proximity to the Fermi level. However, it remains unclear whether these singularities are generic to the REREFeAsO-type materials and if so, whether their exact topology is responsible for the aforementioned record TcT_{\mathrm{c}}. In this work, we use angle-resolved photoemission spectroscopy (ARPES) to investigate the inherent electronic structure of the NdFeAsO0.6_{0.6}F0.4_{0.4} compound with a twice higher Tc=38 KT_{\mathrm{c}}=38\ \textrm{K}. We find a similarly singular Fermi surface and further demonstrate that the dramatic enhancement of superconductivity in this compound correlates closely with the fine-tuning of one of the band-edge singularities to within a fraction of the superconducting energy gap Δ\Delta below the Fermi level. Our results provide compelling evidence that the band-structure singularities near the Fermi level in the iron-based superconductors must be explicitly accounted for in any attempt to understand the mechanism of superconducting pairing in these materials.Comment: Open access article available online at http://www.nature.com/articles/srep1827

    Normal state resistivity of Ba1x_{1-x}Kx_xFe2_2As2_2: evidence for multiband strong-coupling behavior

    Get PDF
    We present theoretical analysis of the normal state resistivity in multiband superconductors in the framework of Eliashberg theory. The results are compared with measurements of the temperature dependence of normal state resistivity of high-purity Ba0.68_{0.68}K0.32_{0.32}Fe2_{2}As2_{2} single crystals with the highest reported transition temperature TcT_c = 38.5 K. The experimental data demonstrate strong deviations from the Bloch-Gr\"{u}neisen behavior, namely the tendency to saturation of the resistivity at high temperatures. The observed behavior of the resistivity is explained within the two band scenario when the first band is strongly coupled and relatively clean, while the second band is weakly coupled and is characterized by much stronger impurity scattering.Comment: 4 pages, 3 figures, to be published in JETP Letters Vol.94, N
    corecore