632 research outputs found

    A note on the heat balance of the Mediterranean and Red Seas

    Get PDF
    The Mediterranean and Red Seas are used as test volumes in an attempt to assess the accuracy of estimates of climatological air-sea fluxes calculated using meteorological observations from merchant ships…

    The relationship between human placental morphometry and ultrasonic measurements of utero-placental blood flow and fetal growth.

    Get PDF
    INTRODUCTION: Ultrasonic fetal biometry and arterial Doppler flow velocimetry are widely used to assess the risk of pregnancy complications. There is an extensive literature on the relationship between pregnancy outcomes and the size and shape of the placenta. However, ultrasonic fetal biometry and arterial Doppler flow velocimetry have not previously been studied in relation to postnatal placental morphometry in detail. METHODS: We conducted a prospective cohort study of nulliparous women in The Rosie Hospital, Cambridge (UK). We studied a group of 2120 women who had complete data on uterine and umbilical Doppler velocimetry and fetal biometry at 20, 28 and 36 weeks' gestational age, digital images of the placenta available, and delivered a liveborn infant at term. Associations were expressed as the difference in the standard deviation (SD) score of the gestational age adjusted ultrasound measurement (z-score) comparing the lowest and highest decile of the given placental morphometric measurement. RESULTS: The lowest decile of placental surface area was associated with 0.87 SD higher uterine artery Doppler mean pulsatility index (PI) at 20 weeks (95% CI: 0.68 to 1.07, P < 0.001). The lowest decile of placental weight was associated with 0.73 SD higher umbilical artery Doppler PI at 36 weeks (95% CI: 0.54 to 0.93, P < 0.001). The lowest decile of both placental weight and placental area were associated with reduced growth velocity of the fetal abdominal circumference between 20 and 36 weeks (both P < 0.001). CONCLUSION: Placental area and weight are associated with uterine and umbilical blood flow, respectively, and both are associated with fetal growth rate.This study was funded by the NIHR Cambridge Comprehensive Biomedical Research Centre (grant number A019057) and Stillbirth and Neonatal Death Society (SANDS). GE donated two ultrasound machines for use in the project.This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.placenta.2015.12.00

    Study protocol. A prospective cohort study of unselected primiparous women: the pregnancy outcome prediction study.

    Get PDF
    BACKGROUND: There have been dramatic changes in the approach to screening for aneuploidy over the last 20 years. However, the approach to screening for other complications of pregnancy such as intra-uterine growth restriction, pre-eclampsia and stillbirth remains largely unchanged. Randomised controlled trials of routine application of high tech screening methods to the general population have generally failed to show improvement in outcome. We have previously reviewed this and concluded it was due, in large part, to poor performance of screening tests. Here, we report a study design where the primary aim is to generate clinically useful methods to screen women to assess their risk of adverse pregnancy outcome. METHODS/DESIGN: We report the design of a prospective cohort study of unselected primiparous women recruited at the time of their first ultrasound scan. Participation involves serial phlebotomy and obstetric ultrasound at the dating ultrasound scan (typically 10-14 weeks), 20 weeks, 28 weeks and 36 weeks gestation. In addition, maternal demographic details are obtained; maternal and paternal height are measured and maternal weight is serially measured during the pregnancy; maternal, paternal and offspring DNA are collected; and, samples of placenta and membranes are collected at birth. Data will be analysed as a prospective cohort study, a case-cohort study, and a nested case-control study. DISCUSSION: The study is expected to provide a resource for the identification of novel biomarkers for adverse pregnancy outcome and to evaluate the performance of biomarkers and serial ultrasonography in providing clinically useful prediction of risk

    Microbial Reduction of U(VI) under Alkaline Conditions: Implications for Radioactive Waste Geodisposal

    Get PDF
    Although there is consensus that microorganisms significantly influence uranium speciation and mobility in the subsurface under circumneutral conditions, microbiologically mediated U(VI) redox cycling under alkaline conditions relevant to the geological disposal of cementitious intermediate level radioactive waste, remains unexplored. Here, we describe microcosm experiments that investigate the biogeochemical fate of U(VI) at pH 10–10.5, using sediments from a legacy lime working site, stimulated with an added electron donor, and incubated in the presence and absence of added Fe(III) as ferrihydrite. In systems without added Fe(III), partial U(VI) reduction occurred, forming a U(IV)-bearing non-uraninite phase which underwent reoxidation in the presence of air (O2) and to some extent nitrate. By contrast, in the presence of added Fe(III), U(VI) was first removed from solution by sorption to the Fe(III) mineral, followed by bioreduction and (bio)magnetite formation coupled to formation of a complex U(IV)-bearing phase with uraninite present, which also underwent air (O2) and partial nitrate reoxidation. 16S rRNA gene pyrosequencing showed that Gram-positive bacteria affiliated with the Firmicutes and Bacteroidetes dominated in the post-reduction sediments. These data provide the first insights into uranium biogeochemistry at high pH and have significant implications for the long-term fate of uranium in geological disposal in both engineered barrier systems and the alkaline, chemically disturbed geosphere

    Determination of zeolite-group mineral compositions by electron probe microanalysis

    Get PDF
    A new protocol for the quantitative determination of zeolite-group mineral compositions by electron probe microanalysis (wavelength-dispersive spectrometry) under ambient conditions, is presented. The method overcomes the most serious challenges for this mineral group, including new confidence in the fundamentally important Si-Al ratio. Development tests were undertaken on a set of natural zeolite candidate reference samples, representing the compositional extremes of Na, K, Cs, Mg, Ca, Sr and Ba zeolites, to demonstrate and assess the extent of beam interaction effects on each oxide component for each mineral. These tests highlight the variability and impact of component mobility due to beam interaction, and show that it can be minimized with recommended operating conditions of 15 kV, 2 nA, a defocused, 20 μm spot size, and element prioritizing with the spectrometer configuration. The protocol represents a pragmatic solution that works, but provides scope for additional optimization where required. Vital to the determination of high-quality results is the attention to careful preparations and the employment of strict criteria for data reduction and quality control, including the monitoring and removal of non-zeolitic contaminants from the data (mainly Fe and clay phases). Essential quality criteria include the zeolite-specific parameters of R value (Si/(Si + Al + Fe3+), the ‘E%’ charge-balance calculation, and the weight percent of non-hydrous total oxides. When these criteria are applied in conjunction with the recommended analytical operating conditions, excellent inter-batch reproducibility is demonstrated. Application of the method to zeolites with complex solid-solution compositions is effective, enabling more precise geochemical discrimination for occurrence-composition studies. Phase validation for the reference set was conducted satisfactorily with the use of X-ray diffraction and laser-ablation inductively-coupled plasma mass spectroscopy

    Effect of melt composition on the reaction of uranium dioxide with hydrogen chloride in molten alkali chlorides

    Full text link
    The reaction of uranium dioxide with excess hydrogen chloride in alkali chloride melts (LiCl, 3LiCl-2KCl, NaCl-KCl and NaCl-2CsCl) has been studied between 450 and 750°C, and the reaction products were characterized by electronic absorption and X-ray absorption spectroscopy. Uranium(V), [UO 2Cl4]3-, and uranium(IV), [UCl 6]2-, species were formed. They depended upon the temperature and the radius of the alkali cations present. Uranium(V) ions predominated in melts with small cations (LiCl and 3LiCl-2KCl). © 2007 Verlag der Zeitschrift für Naturforschung

    The effect of delaying childbirth on primary cesarean section rates.

    Get PDF
    BACKGROUND: The relationship between population trends in delaying childbirth and rising rates of primary cesarean delivery is unclear. The aims of the present study were (1) to characterize the association between maternal age and the outcome of labor, (2) to determine the proportion of the increase in primary cesarean rates that could be attributed to changes in maternal age distribution, and (3) to determine whether the contractility of uterine smooth muscle (myometrium) varied with maternal age. METHODS AND FINDINGS: We utilized nationally collected data from Scotland, from 1980 to 2005, and modeled the risk of emergency cesarean section among women delivering a liveborn infant in a cephalic presentation at term. We also studied isolated myometrial strips obtained from 62 women attending for planned cesarean delivery in Cambridge, England, from 2005 to 2007. Among 583,843 eligible nulliparous women, there was a linear increase in the log odds of cesarean delivery with advancing maternal age from 16 y upwards, and this increase was unaffected by adjustment for a range of maternal characteristics (adjusted odds ratio for a 5-y increase 1.49, 95% confidence interval [CI] 1.48-1.51). Increasing maternal age was also associated with a longer duration of labor (0.49 h longer for a 5-y increase in age, 95% CI 0.46-0.51) and an increased risk of operative vaginal birth (adjusted odds ratio for a 5-y increase 1.49, 95% CI 1.48-1.50). Over the period from 1980 to 2005, the cesarean delivery rate among nulliparous women more than doubled and the proportion of women aged 30-34 y increased 3-fold, the proportion aged 35-39 y increased 7-fold, and the proportion aged > or =40 y increased 10-fold. Modeling indicated that if the age distribution had stayed the same over the period of study, 38% of the additional cesarean deliveries would have been avoided. Similar associations were observed in multiparous women. When studied in vitro, increasing maternal age was associated with reduced spontaneous activity and increased likelihood of multiphasic spontaneous myometrial contractions. CONCLUSIONS: Delaying childbirth has significantly contributed to rising rates of intrapartum primary cesarean delivery. The association between increasing maternal age and the risk of intrapartum cesarean delivery is likely to have a biological basis
    corecore