20 research outputs found

    Experimental two-phase heat transfer study of R245fa in horizontal mini-channels at high saturation temperatures

    Get PDF
    Heat transfer measurements for R254fa were conducted. The heat transfer coefficient was determined for a smooth stainless steel tube with an inner tube diameter of 3 mm. The experiments were conducted for three heat fluxes (10, 30 and 50 W/m^2), five mass fluxes (100, 300, 500, 700 and 1000 kg/(m^2.s)) and at three saturation temperatures (40°C, 70°C and 125°C). The experimental data was used to determine the influence of the saturation temperature, mass flux, heat flux and vapour quality on the heat transfer coefficient. At a low saturation temperature, the heat transfer coefficient increases with an increasing mass flux. However, at a high saturation temperature the heat transfer coefficient decreases with an increasing mass flux. Furthermore, the heat transfer coefficient increases with increasing vapour quality at a low saturation temperature. On the contrary, the heat transfer coefficient decreases at higher saturation temperatures

    Flow regime based heat transfer correlation for R245fa in a 3 mm tube

    Get PDF
    241 heat transfer measurements for R254fa were conducted. The heat transfer coefficient was determined for a smooth stainless steel tube with an inner tube diameter of 3 mm. The experiments were conducted for five mass fluxes (100, 300, 500, 700 and 1000 kg/(m2 s)), three heat fluxes (10, 30 and 50 kW/m2) and at three saturation temperatures (40 °C, 70 °C and 125 °C). The experiments were used to determine the influence of the saturation temperature, mass flux, heat flux, vapour quality and flow regime on the heat transfer coefficient. At a low saturation temperature, the heat transfer coefficient increases with an increasing mass flux. However, at a high saturation temperature the heat transfer coefficient decreases with an increasing mass flux. Furthermore, the heat transfer coefficient increases with increasing vapour quality at a low saturation temperature. On the contrary, the heat transfer coefficient decreases at higher saturation temperatures. Due to the fact that most heat transfer models found in literature are developed for low saturation temperatures and one flow regime, the heat transfer coefficients predicted by the existing models do not comply very well with the experimental data. Thus, a new heat transfer correlation for R254fa was proposed. The new correlation has a Mean Absolute Error of 11.7% for the experimental data of a tube with an inner tube diameter of 3 mm. Finally, this new correlation was also verified with R245fa datasets of other authors

    New Mass and Radius Constraints on the LHS 1140 Planets -- LHS 1140 b is Either a Temperate Mini-Neptune or a Water World

    Full text link
    The two-planet transiting system LHS 1140 has been extensively observed since its discovery in 2017, notably with SpitzerSpitzer, HST, TESS, and ESPRESSO, placing strong constraints on the parameters of the M4.5 host star and its small temperate exoplanets, LHS 1140 b and c. Here, we reanalyse the ESPRESSO observations of LHS 1140 with the novel line-by-line framework designed to fully exploit the radial velocity content of a stellar spectrum while being resilient to outlier measurements. The improved radial velocities, combined with updated stellar parameters, consolidate our knowledge on the mass of LHS 1140 b (5.60±\pm0.19 M_{\oplus}) and LHS 1140 c (1.91±\pm0.06 M_{\oplus}) with unprecedented precision of 3%. Transits from SpitzerSpitzer, HST, and TESS are jointly analysed for the first time, allowing us to refine the planetary radii of b (1.730±\pm0.025 R_{\oplus}) and c (1.272±\pm0.026 R_{\oplus}). Stellar abundance measurements of refractory elements (Fe, Mg and Si) obtained with NIRPS are used to constrain the internal structure of LHS 1140 b. This planet is unlikely to be a rocky super-Earth as previously reported, but rather a mini-Neptune with a \sim0.1% H/He envelope by mass or a water world with a water-mass fraction between 9 and 19% depending on the atmospheric composition and relative abundance of Fe and Mg. While the mini-Neptune case would not be habitable, a water-abundant LHS 1140 b potentially has habitable surface conditions according to 3D global climate models, suggesting liquid water at the substellar point for atmospheres with relatively low CO2_2 concentration, from Earth-like to a few bars.Comment: 31 pages, 18 figures, accepted for publication in ApJ

    Etude expérimentale de l'ébullition convective dans des mini-canaux horizontaux à hautes températures de saturation

    No full text
    Because of current environmental issues, some technologies are being developed to reduce the fuel consumption and to reduce the emissions of CO2. Energy recovery by means of Organic Rankine Cycles or Hirn Cycles recovery is one investigated track to answer these issues. At present, some systems based on Organic Rankine Cycle (ORC) are available in industry but advanced studies are needed to allow their application in the road transport industry. A better understanding of the two-phase fluid behaviour is necessary to optimize the design models of the components containing a two-phase refrigerant. For the Organic Rankine Cycle system, the thermodynamic conditions are different to standards relevant to refrigeration or air-conditioning systems. Indeed, the key characteristic of the ORC system is the evaporation saturation temperature. Exhaust gases temperature ranges from 400°C to 900°C and the refrigerant evaporation occurs at temperatures higher than 100°C. Almost all the flow boiling heat transfer models or correlations have been obtained for saturation temperatures ranging from -20°C to 40°C which correspond to standards relevant to refrigeration or air conditioning systems. The empirical models for boiling in such conditions are limited by the experimental data on which they are based, whereas analytical and theoretical approaches are needed to advanced knowledge on the behaviour of thermohydraulic two-phase refrigerant. This PhD thesis aims at studying the flow boiling characteristics of R-245fa in a 3.00 inner diameter channel in the thermodynamic conditions of the ORC system. Therefore, the saturation temperature ranged from 60°C to 120°C. To achieve this goal, an experimental test facility was designed and built to conduct refrigerant evaporation experiments. This test facility allowed to perform flow regime visualizations, pressure drop and heat transfer measurements in minichannel. First, an image processing method for two phase flow pattern characterization was developed. Based on this method and with the help of an adequate analysis of the heat transfer coefficient, the main flow regimes have been identified. The influence of saturation temperature on the flow patterns and their transitions has been highlighted. The second objective was to provide new experimental data concerning flow boiling heat transfer in minichannel. Flow boiling heat transfer coefficients at such high temperature have, so to say, almost never been reported in the open literature so far. The influence of saturation temperature on the heat transfer mechanisms has been discussed. In order to evaluate the capability of the current flow boiling prediction methods to predict the heat transfer coefficient, the comparison between experimental results and theoretical results predicted with the commonly used correlations and models were made. Lastly, pressure drop databases are presented. Experimental values of pressure drops were compared against several methods.La valorisation de l'énergie thermique contenue dans des gaz chauds pour produire de l'électricité est possible grâce à l'utilisation de cycles thermodynamiques, parmi lesquels le cycle de Rankine mérite d'être considéré. Cependant, l'industrialisation d'un tel système passe par une connaissance approfondie du comportement thermohydraulique du fluide actif. Ceci permettra d'améliorer le design des principaux composants du système, spécialement les échangeurs de chaleur. Dans le cas du cycle organique de Rankine, les conditions thermodynamiques du fluide sont éloignées des conditions usuelles rencontrées dans les domaines de la climatisation ou de la réfrigération. En effet, le fluide est mis en œuvre dans des conditions proches de son point critique. La température des gaz d'échappement varie entre 400°C et 900°C et l'évaporation se produit à une température de saturation supérieure à 100°C. En ce qui concerne les caractéristiques des écoulements diphasiques (chute de pression, coefficient de transferts thermiques, régimes d'écoulement), la quasi-totalité des méthodes de prédiction a été développée pour des températures comprises entre -20°C et 40°C correspondantes aux domaines de la climatisation ou de la réfrigération. C'est pourquoi la fiabilité de ces modèles reste incertaine dans les conditions d'évaporation du cycle de Rankine, car leur utilisation est limitée par la base de données à partir de laquelle ils ont été établis et ne peuvent être extrapolés avec précision. Cette thèse vise à étudier les caractéristiques thermohydrauliques du R-245fa en ébullition convective dans les conditions du cycle de Rankine. Dans un premier temps, un banc expérimental a été conçu et construit afin de réaliser des tests en ébullition convective dans un minicanal de 3.00 mm de diamètre. Ce banc expérimental permet de faire des mesures sur les régimes d'écoulement, les coefficients de transfert de chaleur et les pertes de charge par frottement. Dans un second temps, une méthode de traitement d'image a été développée afin de caractériser différents régimes d'écoulement. Cette méthode couplée à une analyse des transferts thermiques a permis d'identifier quatre principaux régimes d'écoulement. L'influence de la température de saturation sur les régimes d'écoulement et leurs transitions a été soulignée et discutée. Les caractéristiques des bulles ont également été étudiées à l'aide de cette méthode. Dans un troisième temps, une base de données expérimentale sur les coefficients de transfert de chaleur a été créée. L'influence de la température de saturation sur les mécanismes de transfert thermique a été étudiée dans ces conditions originales. Afin de tester la fiabilité des méthodes de prédiction, les résultats expérimentaux ont été confrontés à différentes méthodes. Finalement, les chutes de pressions ont été mesurées et une analyse paramétrique a été menée. Les mesures ont été confrontées aux principales méthodes disponibles dans la littérature

    Flow boiling heat transfer in minichannels at high saturation temperatures: Part I : Experimental investigation and analysis of the heat transfer mechanisms

    No full text
    International audienceThis paper presents new experimental data concerning flow boiling heat transfer in minichannel at high saturation temperatures. The experimental data were obtained in a horizontal 3.00 mm inner diameter stainless steel tube with R-245fa as working fluid. The mass velocity ranges from 100 to 1500 kg/m 2 s, the heat flux varies from 10 to 50 kW/m 2 and the inlet vapor quality from 0 to 1. This experimental work is characterized by a saturation temperature ranging from 100 °C to 120 °C. Flow boiling heat transfer coefficients in these conditions have not been reported in the open literature so far. Four flow patterns are likely to appear in these conditions: intermittent flow, annular flow, dryout flow and mist flow regimes. The kind of flow pattern has a major influence on the heat transfer mechanisms. The influence of the mass velocity and the heat flux was investigated to identify the dominant heat transfer mechanisms. At high saturation temperatures, the experimental results clearly show the dominance of nucleate boiling over a wide range of vapor quality
    corecore