27 research outputs found

    DGP specteroscopy

    Get PDF
    We systematically explore the spectrum of gravitational perturbations in codimension-1 DGP braneworlds, and find a 4D ghost on the self-accelerating branch of solutions. The ghost appears for any value of the brane tension, although depending on the sign of the tension it is either the helicity-0 component of the lightest localized massive tensor of mass

    Synergistic Gravity and the Role of Resonances in GRS-Inspired Braneworlds

    Full text link
    We consider 5D braneworld models of quasi-localized gravity in which 4D gravity is reproduced at intermediate scales while the extra dimension opens up at both the very short and the very long distances, where the geometry is flat. Our main interest is the interplay between the zero mode of these models, whenever a normalizable zero mode exists, and the effects of zero energy graviton resonant modes coming from the contributions of massive KK modes. We first consider a compactified version of the GRS model and find that quasi-localized gravity is characterized by a scale for which both the resonance and the zero mode have significant contribution to 4D gravity. Above this scale, gravity is primarily mediated by the zero mode, while the resonance gives only minor corrections. Next, we consider an asymmetric version of the standard non-compact GRS model, characterized by different cosmological constants on each AdS side. We show that a resonance is present but the asymmetry, through the form of the localizing potential, can weaken it, resulting in a shorter lifetime and, thus, in a shorter distance scale for 4D gravity. As a third model exhibiting quasi-localization, we consider a version of the GRS model in which the central positive tension brane has been replaced by a configuration of a scalar field propagating in the bulk.Comment: 18 pages, 3 figures, added 1 figure, revised version as published in Class. Quant. Gra

    Ghosts in asymmetric brane gravity and the decoupled stealth limit

    Get PDF
    We study the spectrum of gravitational perturbations around a vacuum de Sitter brane in a 5D asymmetric braneworld model, with induced curvature on the brane. This generalises the stealth acceleration model proposed by Charmousis, Gregory and Padilla (CGP) which realises the Cardassian cosmology in which power law cosmic acceleration can be driven by ordinary matter. Whenever the bulk has infinite volume we find that there is always a perturbative ghost propagating on the de Sitter brane, in contrast to the Minkowski brane case analysed by CGP. We discuss the implication of this ghost for the stealth acceleration model, and identify a limiting case where the ghost decouples as the de Sitter curvature vanishes.Comment: 21 page

    Stealth Acceleration and Modified Gravity

    Full text link
    We show how to construct consistent braneworld models which exhibit late time acceleration. Unlike self-acceleration, which has a de Sitter vacuum state, our models have the standard Minkowski vacuum and accelerate only in the presence of matter, which we dub ``stealth-acceleration''. We use an effective action for the brane which includes an induced gravity term, and allow for an asymmetric set-up. We study the linear stability of flat brane vacua and find the regions of parameter space where the set-up is stable. The 4-dimensional graviton is only quasi-localised in this set-up and as a result gravity is modified at late times. One of the two regions is strongly coupled and the scalar mode is eaten up by an extra symmetry that arises in this limit. Having filtered the well-defined theories we then focus on their cosmology. When the graviton is quasi-localised we find two main examples of acceleration. In each case, we provide an illustrative model and compare it to LambdaCDM.Comment: 32 pages, 5 figure

    Gauss-Bonnet brane-world cosmology without Z2Z_{2}-symmetry

    Full text link
    We consider a single 3-brane situated between two bulk spacetimes that posses the same cosmological constant, but whose metrics do not posses a Z2Z_{2}-symmetry. On each side of the brane, the bulk is a solution to Gauss-Bonnet gravity. This asymmetry modifies junction conditions, and so new terms arise in the Friedmann equation. If these terms become dominant, these behave cosmological constant at early times for some case, and might remove the initial singularity for other case. However, we show that these new terms can not become dominant ones under usual conditions when our brane is outside an event horizon. We also show that any brane-world scenarios of this type revert to a Z2Z_{2}-symmetric form at late times, and hence rule out certain proposed scenarios.Comment: 8 pages, 3 figures; Minor typos corrected. References added. V3: Numerical errors are corrected. Fig.1 and Fig.3 are replaced. V4: published versio

    A short review of "DGP Specteroscopy"

    Get PDF
    In this paper we provide a short review of the main results developed in hep-th/0604086. We focus on linearised vacuum perturbations about the self-accelerating branch of solutions in the DGP model. These are shown to contain a ghost in the spectrum for any value of the brane tension. We also comment on hep-th/0607099, where some counter arguments have been presented.Comment: Minor typos correcte

    Cosmic acceleration from asymmetric branes

    Full text link
    We consider a single 3-brane sitting in between two different five dimensional spacetimes. On each side of the brane, the bulk is a solution to Gauss-Bonnet gravity, although the bare cosmological constant, funda mental Planck scale, and Gauss-Bonnet coupling can differ. This asymmetry leads to weighted junction conditions across the brane and interesting brane cosmology. We focus on two special cases: a generalized Randall-Sundrum model without any Gauss-Bonnet terms, and a stringy model, without any bare cosmological constants, and positive Gauss-Bonnet coupling. Even though we assume there is no vacuum energy on the brane, we find late time de Sitter cosmologies can occur. Remarkably, in certain parameter regions, this acceleration is preceded by a period of matter/radiation domination, with H2ρH^2 \propto \rho, all the way back to nucleosynthesis.Comment: Version appearing in CQ

    Lessons from the decoupling limit of Horava gravity

    Full text link
    We consider the so-called "healthy" extension of Horava gravity in the limit where the Stuckelberg field decouples from the graviton. We verify the alleged strong coupling problem in this limit, under the assumption that no large dimensionless parameters are put in by hand. This follows from the fact that the dispersion relation for the Stuckelberg field does not have the desired z = 3 anisotropic scaling in the UV. To get the desired scaling and avoid strong coupling one has to introduce a low scale of Lorentz violation and retain some coupling between the graviton and the Stuckelberg field. We also make use of the foliation preserving symmetry to show how the Stuckelberg field couples to some violation of energy conservation. We source the Stuckelberg field using a point particle with a slowly varying mass and show that two such particles feel a constant attractive force. In this particular example, we see no Vainshtein effect, and violations of the Equivalence Principle. The latter is probably generic to other types of source and could potentially be used to place lower bounds on the scale of Lorentz violation.Comment: 18 pages, 1 figure. Version to appear in JHEP. Conclusions with respect to strong coupling modified - our strong coupling analysis does not apply to a low scale of Lorentz violation. Expanded Equivalence Principle violation discussion, noting it presents a challenge to low scale Lorentz violation, exactly the scenario designed to cure strong coupling. Other minor corrections and references adde

    Galileon Hairs of Dyson Spheres, Vainshtein's Coiffure and Hirsute Bubbles

    Full text link
    We study the fields of spherically symmetric thin shell sources, a.k.a. Dyson spheres, in a {\it fully nonlinear covariant} theory of gravity with the simplest galileon field. We integrate exactly all the field equations once, reducing them to first order nonlinear equations. For the simplest galileon, static solutions come on {\it six} distinct branches. On one, a Dyson sphere surrounds itself with a galileon hair, which far away looks like a hair of any Brans-Dicke field. The hair changes below the Vainshtein scale, where the extra galileon terms dominate the minimal gradients of the field. Their hair looks more like a fuzz, because the galileon terms are suppressed by the derivative of the volume determinant. It shuts off the `hair bunching' over the `angular' 2-sphere. Hence the fuzz remains dilute even close to the source. This is really why the Vainshtein's suppression of the modifications of gravity works close to the source. On the other five branches, the static solutions are all {\it singular} far from the source, and shuttered off from asymptotic infinity. One of them, however, is really the self-accelerating branch, and the singularity is removed by turning on time dependence. We give examples of regulated solutions, where the Dyson sphere explodes outward, and its self-accelerating side is nonsingular. These constructions may open channels for nonperturbative transitions between branches, which need to be addressed further to determine phenomenological viability of multi-branch gravities.Comment: 29+1 pages, LaTeX, 2 .pdf figure

    Bi-galileon theory II: phenomenology

    Get PDF
    We continue to introduce bi-galileon theory, the generalisation of the single galileon model introduced by Nicolis et al. The theory contains two coupled scalar fields and is described by a Lagrangian that is invariant under Galilean shifts in those fields. This paper is the second of two, and focuses on the phenomenology of the theory. We are particularly interesting in models that admit solutions that are asymptotically self accelerating or asymptotically self tuning. In contrast to the single galileon theories, we find examples of self accelerating models that are simultaneously free from ghosts, tachyons and tadpoles, able to pass solar system constraints through Vainshtein screening, and do not suffer from problems with superluminality, Cerenkov emission or strong coupling. We also find self tuning models and discuss how Weinberg's no go theorem is evaded by breaking Poincar\'e invariance in the scalar sector. Whereas the galileon description is valid all the way down to solar system scales for the self-accelerating models, unfortunately the same cannot be said for self tuning models owing to the scalars backreacting strongly on to the geometry
    corecore