113 research outputs found

    Estimating Pasture Intake by Cattle Using Alkanes and a Known Amount of Supplement

    Get PDF
    The alkane ratio method for estimating pasture intake involves calculating the fecal ratio of plant (endogenous) and exogenous alkanes. This method is effective for sheep, although the delivery mechanism for the exogenous alkanes has presented challenges in cattle (Charmley et al. 2003). Dove et al. (2003) have shown that the relative concentration of components in a mixed diet can be estimated from fecal alkane concentrations using least squares methods. Further, if the amount of one dietary component is known, then the amount of all components, and hence intake, can be determined. In this trial beeswax was added to barley (BWB) giving the mixture a unique alkane composition. Known amounts of this mixture were then fed to cattle grazing three sward types

    Geometric and dynamic analysis of shoe-type centerless grinding

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1992.Includes bibliographical references (leaves 91-94).by James E. Charmley.M.S

    Increasing the proportion of Leucaena leucocephala in hay-fed beef steers reduces methane yield

    Full text link
    peer reviewedContext: Leucaena leucocephala (leucaena) is a leguminous shrub adapted to higher rainfall (>600 mm) in frost-free areas of Australia. It can be a source of high-quality forage for cattle grazing tropical grass-based pastures that are seasonally deficient in the nitrogen content required for adequate levels of performance. Leucaena contains bioactive compounds that may reduce methanogenesis in the rumen, helping to achieve Australia's goal to make red meat production carbon neutral by 2030. Aim: A study was undertaken to evaluate the response in animal performance and methane production to increasing percentages of leucaena in a hay-based diet. Methods: Growing steers were fed diets containing 0%, 18%, 36% and 48% leucaena. Intake, liveweight gain, methane production and yield were measured in a cross-over trial with two modern cultivars of leucaena (Redlands and Wondergraze). Methane was measured in open-circuit respiration chambers. Key results: There were no effects of cultivar on most parameters. Increasing leucaena percentage in the diet increased dry matter intake, animal performance and methane production (g/day) but reduced methane yield (g/kg dry matter intake) according to the equation: methane yield = 19.8-0.09 Ă— leucaena percentage in the diet. The inclusion of polyethylene glycol to nullify potential antimethanogenic activity of tannins restored methane yield by 67%, indicating that tannins were responsible for most of the observed reduction in methane yield. Conclusion: The results demonstrate that leucaena can improve animal performance and reduce methane yield in steers fed low-quality grasses. Implications: Leucaena can be included in diets of grazing cattle in areas agronomically suited to its production, as a means to reduce enteric methane emissions

    Response to climate change: evaluation of methane emissions in Northern Australian beef cattle on a high quality diet supplemented with Desmanthus using open-circuit respiration chambers and GreenFeed emission monitoring systems

    Get PDF
    Simple Summary The beef industry in Northern Australia is characterized by an extensive grazing system in dry tropical rangelands defined by climate change indices of very low rainfall, a prolonged dry season and feeds of low nutritive value. In response, beef cattle need to be more efficient in converting the available drought-tolerant feeds to muscle, in an attempt to minimize greenhouse gas emissions. This study addressed the problem of reducing methane emissions from tropical beef cattle with the goal of decreasing the impact of climate change and greenhouse gas emissions in Northern Australia. The primary objective was to compare the effect of supplementing tropical beef cattle with both good quality lucerne and poor quality hay with increasing levels of different Desmanthus cultivars on in vivo methane emission. The results showed that in tropical beef cattle on high-quality diets, irrespective of cultivar and emission evaluation method, Desmanthus does not reduce methane emissions. Abstract The main objective of this study was to compare the effect of supplementing beef cattle with Desmanthus virgatus cv. JCU2, D. bicornutus cv. JCU4, D. leptophyllus cv. JCU7 and lucerne on in vivo methane (CH4) emissions measured by open-circuit respiration chambers (OC) or the GreenFeed emission monitoring (GEM) system. Experiment 1 employed OC and utilized sixteen yearling Brangus steers fed a basal diet of Rhodes grass (Chloris gayana) hay in four treatments—the three Desmanthus cultivars and lucerne (Medicago sativa) at 30% dry matter intake (DMI). Polyethylene glycol (PEG) was added to the diets to neutralize tannin binding and explore the effect on CH4 emissions. Experiment 2 employed GEM and utilized forty-eight animals allocated to four treatments including a basal diet of Rhodes grass hay plus the three Desmanthus cultivars in equal proportions at 0, 15, 30 and 45% DMI. Lucerne was added to equilibrate crude protein content in all treatments. Experiment 1 showed no difference in CH4 emissions between the Desmanthus cultivars, between Desmanthus and lucerne or between Desmanthus and the basal diet. Experiment 2 showed an increase in CH4 emissions in the three levels containing Desmanthus. It is concluded that on high-quality diets, Desmanthus does not reduce CH4 emissions

    A universal equation to predict methane production of forage-fed cattle in Australia

    Get PDF
    The methods for estimating methane emissions from cattle as used in the Australian national inventory are based on older data that have now been superseded by a large amount of more recent data. Recent data suggested that the current inventory emissions estimates can be improved. To address this issue, a total of 1034 individual animal records of daily methane production (MP) was used to reassess the relationship between MP and each of dry matter intake (DMI) and gross energy intake (GEI). Data were restricted to trials conducted in the past 10 years using open-circuit respiration chambers, with cattle fed forage-based diets (forage >70%). Results from diets considered to inhibit methanogenesis were omitted from the dataset. Records were obtained from dairy cattle fed temperate forages (220 records), beef cattle fed temperate forages (680 records) and beef cattle fed tropical forages (133 records). Relationships were very similar for all three production categories and single relationships for MP on a DMI or GEI basis were proposed for national inventory purposes. These relationships were MP (g/day) = 20.7 (±0.28) × DMI (kg/day) (R2 = 0.92, P < 0.001) and MP (MJ/day) = 0.063 (±0.008) × GEI (MJ/day) (R2 = 0.93, P < 0.001). If the revised MP (g/day) approach is used to calculate Australia’s national inventory, it will reduce estimates of emissions of forage-fed cattle by 24%. Assuming a global warming potential of 25 for methane, this represents a 12.6 Mt CO2-e reduction in calculated annual emissions from Australian cattle

    Prediction of enteric methane production, yield and intensity of beef cattle using an intercontinental database

    Get PDF
    Enteric methane (CH4) production attributable to beef cattle contributes to global greenhouse gas emissions. Reliably estimating this contribution requires extensive CH4 emission data from beef cattle under different management conditions worldwide. The objectives were to: 1) predict CH4 production (g d¬-1 animal-1), yield [g (kg dry matter intake; DMI)-1] and intensity [g (kg average daily gain)-1] using an intercontinental database (data from Europe, North America, Brazil, Australia and South Korea); 2) assess the impact of geographic region, and of higher- and lower-forage diets. Linear models were developed by incrementally adding covariates. A K-fold cross-validation indicated that a CH4 production equation using only DMI that was fitted to all available data had a root mean square prediction error (RMSPE; % of observed mean) of 31.2%. Subsets containing data with ≥ 25% and ≤ 18% dietary forage contents had an RMSPE of 30.8 and 34.2%, with the all-data CH4 production equation, whereas these errors decreased to 29.3 and 28.4%, respectively, when using CH4 prediction equations fitted to these subsets. The RMSPE of the ≥ 25% forage subset further decreased to 24.7% when using multiple regression. Europe- and North America-specific subsets predicted by the best performing ≥ 25% forage multiple regression equation had RMSPE of 24.5 and 20.4%, whereas these errors were 24.5 and 20.0% with region-specific equations, respectively. The developed equations had less RMSPE than extant equations evaluated for all data (22.5 vs. 23.2%), for higher-forage (21.2 vs. 23.1%), but not for the lower-forage subsets (28.4 vs. 27.9%). Splitting the dataset by forage content did not improve CH4 yield or intensity predictions. Predicting beef cattle CH4 production using energy conversion factors, as applied by the Intergovernmental Panel on Climate Change, indicated that adequate forage content-based and region-specific energy conversion factors improve prediction accuracy and are preferred in national or global inventories

    Polymorphism in a T-cell receptor variable gene is associated with susceptibility to a juvenile rheumatoid arthritis subset

    Full text link
    This report demonstrates a T-cell receptor (Tcr) restriction fragment length polymorphism, defined by a Tcrb-V6.1 gene probe and Bgl II restriction enzyme, to be absolutely correlated with allelic variation in the coding sequence of a Tcrb-V6.1 gene. A pair of non-conservative amino acid substitutions distinguish the Tcrb-V6.1 allelic variants. An association of this Tcrb-V6.1 gene allelic variant with one form of juvenile rheumatoid arthritis (JRA) was established in a cohort of 126 patients. The association was observed in patients possessing the HLA-DQA1*0101 gene. Among HLA-DQA*0101 individuals, 19 of 26 patients (73.1%) carried one particular Tcrb-V6.1 gene allele as opposed to 11 of 33 controls (33%; p<0.005). Haplotypes carrying this HLA gene have previously been shown to confer increased risk for progression of arthritis in JRA. This demonstration of a disease-associated Tcrb-V gene allelic variant has not, to our knowledge, been previously reported and supports the contribution of polymorphism in the Tcr variable region genomic repertoire to human autoimmune disease.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46750/1/251_2004_Article_BF00166831.pd
    • …
    corecore